Koch Fractal in Non-Euclidean Geometries

被引:0
作者
P. I. Troshin
机构
[1] Kazan Federal University,
来源
Russian Mathematics | 2020年 / 64卷
关键词
Koch curve; Koch snowflake; Koch island; spherical geometry; hyperbolic geometry; Lobachevskii geometry; fractal; L-system;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a spherical and a hyperbolic (on the Lobachevskii plane) analogues for the Koch curve and the Koch snowflake. The formulae describing metric characteristics of these fractals are given. We also suggest the method of construction for these curves with the help of the groups of rigid motions of the spaces in question.
引用
收藏
页码:86 / 90
页数:4
相关论文
共 50 条
  • [1] Koch Fractal in Non-Euclidean Geometries
    Troshin, P., I
    RUSSIAN MATHEMATICS, 2020, 64 (06) : 86 - 90
  • [2] My way to non-Euclidean and fractal kaleidoscopes
    Stampfli, Peter
    JOURNAL OF MATHEMATICS AND THE ARTS, 2020, 14 (1-2) : 144 - 146
  • [3] The non-Euclidean Euclidean algorithm
    Gilman, Jane
    ADVANCES IN MATHEMATICS, 2014, 250 : 227 - 241
  • [4] Urban Geography Compression Patterns: Non-Euclidean and Fractal Viewpoints
    Griffith, Daniel A.
    Arlinghaus, Sandra Lach
    APPLIEDMATH, 2025, 5 (01):
  • [5] URBAN COMPRESSION PATTERNS: FRACTALS AND NON-EUCLIDEAN GEOMETRIES - INVENTORY AND PROSPECT
    Griffith, Daniel A.
    Arlinghaus, Sandra Lach
    QUAESTIONES GEOGRAPHICAE, 2012, 31 (02) : 21 - 28
  • [6] Random Motions at Finite Velocity on Non-Euclidean Spaces
    Cybo Ottone, Francesco
    Orsingher, Enzo
    MATHEMATICS, 2022, 10 (23)
  • [7] KISSING NUMBER IN NON-EUCLIDEAN SPACES OF CONSTANT SECTIONAL CURVATURE
    Dostert, Maria
    Kolpakov, Alexander
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2507 - 2525
  • [8] Supporting the evolution of mathematical meanings: The case of non-Euclidean geometry
    Stevenson I.
    Noss R.
    International Journal of Computers for Mathematical Learning, 1998, 3 (3): : 229 - 254
  • [9] Interactive Design and Optics-Based Visualization of Arbitrary Non-Euclidean Kaleidoscopic Orbifolds
    Zheng, Jinta
    Zhang, Eugene
    Zhang, Yue
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (01) : 1292 - 1301
  • [10] An Unsupervised Learning Method for Attributed Network Based on Non-Euclidean Geometry
    Wu, Wei
    Hu, Guangmin
    Yu, Fucai
    SYMMETRY-BASEL, 2021, 13 (05):