Generalized involute and evolute curves of equiform spacelike curves with a timelike equiform principal normal in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{1}^{3}$\end{document}

被引:7
作者
A. Elsharkawy
机构
[1] Mathematics Department,
[2] Faculty of Science Tanta University,undefined
关键词
Minkowski 3-space; Involute; Evolute; Equiform geometry; Equiform curvatures; 53A35; 53C50;
D O I
10.1186/s42787-020-00086-4
中图分类号
学科分类号
摘要
Equiform geometry is considered as a generalization of the other geometries. In this paper, involute and evolute curves are studied in the case of the curve α is an equiform spacelike with a timelike equiform principal normal vector N. Furthermore, the equiform frames of the involute and evolute curves are obtained. Also, the equiform curvatures of the involute and evolute curves are obtained in Minkowski 3-space.
引用
收藏
相关论文
共 17 条
[1]  
Bahaddin B.(2009)On involute and evolute curves of spacelike curve with a spacelike principal normal in Minkowski 3-space Int. J. Math. Combin. 1 27-37
[2]  
Karacan M.(2017)Special equiform Smarandache curves in Minkowski space-time J. Egy. Math. Soc. 25 319-325
[3]  
Solouma E.(2009)On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space Int. Math. Forum. 4 1497-1509
[4]  
Bilici M.(2013)On the Involute-Evolute of the Pseudonull Curve in Minkowski 3-Space Journal of Applied Mathematics 2013 1-6
[5]  
Ozturk Ufuk(1987)The equiform differential geometry of curves in the Galilean space Glas. Mat. 22 449-457
[6]  
Koc Ozturk Esra Betul(2008)The equiform differential geometry of curves in the pseudo-Galilean space Math. Commun. 13 321-332
[7]  
Ilarslan Kazim(2016)Quaternionic approach to equiform kinematics and line-elements of Euclidean 4-space and 3-space Comput. Aided Geom. Design. 47 150-162
[8]  
Pavkovic B. J.(2017)Equiform spacelike normal curves according to equiform-Bishop frame in E13 Mathematical Methods in the Applied Sciences 41 5754-5760
[9]  
Kamenarovic I.(2017)Equiform timelike normal curves in Minkowski space Far East. J. Math. Sci. 101 1619-1629
[10]  
Divjak E. Z. B.(undefined)undefined undefined undefined undefined-undefined