Covering Arrays on Product Graphs

被引:0
作者
Yasmeen Akhtar
Soumen Maity
机构
[1] Indian Institute of Science Education and Research,
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Covering arrays; Orthogonal arrays; The Cartesian product of graphs; Covering arrays on graphs; Cayley graphs; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Two vectors x, y in Zgn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_g^n$$\end{document} are qualitatively independent if for all pairs (a,b)∈Zg×Zg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,b)\in \mathbb {Z}_g\times \mathbb {Z}_g$$\end{document}, there exists i∈{1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in \{1,2,\ldots ,n\}$$\end{document} such that (xi,yi)=(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_i,y_i)=(a,b)$$\end{document}. A covering array on a graph G, denoted by CA(n, G, g), is a |V(G)|×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(G)|\times n$$\end{document} array on Zg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_g$$\end{document} with the property that any two rows which correspond to adjacent vertices in G are qualitatively independent. The number of columns in such array is called its size. Given a graph G, a covering array on G with minimum size is called optimal. Our primary concern in this paper is with constructions that make optimal covering arrays on large graphs that are obtained from product of smaller graphs. We consider four most extensively studied graph products in the literature and give upper and lower bounds on the size of covering arrays on product graphs. We find families of graphs for which the size of covering array on the Cartesian product graphs achieves the lower bound. Finally, we present a polynomial time approximation algorithm with approximation ratio log(|V|2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lceil \log (\frac{|V|}{2^{k-1}})\right\rceil $$\end{document} for constructing covering array on graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} with k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document} prime factors with respect to the Cartesian product.
引用
收藏
页码:635 / 652
页数:17
相关论文
共 42 条
  • [1] Bush KA(1952)A generalization of the theorem due to MacNeish Ann. Math. Stat. 23 293-295
  • [2] Bush KA(1952)Orthogonal arrays of index unity Ann. Math. Stat. 23 426-434
  • [3] Chateauneuf MA(1999)Covering arrays of strength three Des. Codes. Cryptogr. 16 235-242
  • [4] Colbourn CJ(1997)The AETG system: an approach to testing based on combinatorial design IEEE Trans. Softw. Eng. 23 437-443
  • [5] Kreher DL(2006)Products of mixed covering arrays of strength two J. Combin. Des. 14 124-138
  • [6] Cohen DM(2009)On Cartesian skeletons of graphs Ars Math. Contemp. 2 191-205
  • [7] Dalal SR(2004)Problems and algorithms for covering arrays Discret. Math. 284 149-156
  • [8] Fredman ML(2011)A local prime factor decomposition algorithm Discret. Math. 311 944-965
  • [9] Patton GC(1973)Families of Discret. Math. 6 255-262
  • [10] Colbourn CJ(1994)-independent sets IEEE Trans. Inf. Theory 40 706-715