Monotonicity and inequalities involving the incomplete gamma function

被引:0
作者
Zhen-Hang Yang
Wen Zhang
Yu-Ming Chu
机构
[1] Hunan City University,School of Mathematics and Computation Sciences
[2] State Grid Zhejiang Electric Power Research Institute,Customer Service Center
[3] Yeshiva University,Albert Einstein College of Medicine
来源
Journal of Inequalities and Applications | / 2016卷
关键词
incomplete gamma function; gamma function; psi function; 33B20; 26D07; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we deal with the monotonicity of the function x→[(xp+a)1/p−x]/Ip(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\rightarrow[ (x^{p}+a )^{1/p}-x]/I_{p}(x)$\end{document} on the interval (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0, \infty)$\end{document} for p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document} and a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a>0$\end{document}, and present the necessary and sufficient condition such that the double inequality [(xp+a)1/p−x]/a<Ip(x)<[(xp+b)1/p−x]/b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[ (x^{p}+a )^{1/p}-x]/a< I_{p}(x)<[ (x^{p}+b )^{1/p}-x]/b$\end{document} for all x>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x>0$\end{document} and p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, where Ip(x)=exp∫x∞e−tpdt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{p}(x)=e^{x^{p}}\int_{x}^{\infty}e^{-t^{p}}\,dt$\end{document} is the incomplete gamma function.
引用
收藏
相关论文
共 38 条
  • [1] Neuman E(2013)Inequalities and bounds for the incomplete gamma function Results Math. 63 1209-1214
  • [2] Alzer H(2013)Functional inequalities for the incomplete gamma function J. Math. Anal. Appl. 385 167-178
  • [3] Baricz Á(2009)Uniform bounds for the complementary incomplete gamma function Math. Inequal. Appl. 12 115-121
  • [4] Borwein JM(2006)Functional inequalities for incomplete gamma and related functions Math. Inequal. Appl. 9 299-302
  • [5] Chan OY(2006)Supplements to known monotonicity results and inequalities for the gamma and incomplete gamma function J. Inequal. Appl. 2006 215-231
  • [6] Ismall MEH(2002)Error bounds for the uniform asymptotic expansion of the incomplete gamma function J. Comput. Appl. Math. 147 61-67
  • [7] Laforgia A(2002)Monotonicity results and inequalities for the gamma and incomplete gamma functions Math. Inequal. Appl. 5 39-51
  • [8] Laforgia A(2000)An inequality for the product of two integrals related to the incomplete gamma function J. Inequal. Appl. 5 69-77
  • [9] Natalini P(2000)Inequalities for the incomplete gamma function Math. Inequal. Appl. 3 793-799
  • [10] Paris RB(1999)Some inequalities of the incomplete gamma and related functions Z. Anal. Anwend. 18 47-53