The Lattice of Varieties of Implication Semigroups
被引:0
作者:
Sergey V. Gusev
论文数: 0引用数: 0
h-index: 0
机构:Ural Federal University,Institute of Natural Sciences and Mathematics
Sergey V. Gusev
Hanamantagouda P. Sankappanavar
论文数: 0引用数: 0
h-index: 0
机构:Ural Federal University,Institute of Natural Sciences and Mathematics
Hanamantagouda P. Sankappanavar
Boris M. Vernikov
论文数: 0引用数: 0
h-index: 0
机构:Ural Federal University,Institute of Natural Sciences and Mathematics
Boris M. Vernikov
机构:
[1] Ural Federal University,Institute of Natural Sciences and Mathematics
[2] State University of New York,Department of Mathematics
来源:
Order
|
2020年
/
37卷
关键词:
Implication semigroup;
Variety;
Lattice of varieties;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An implication semigroup is an algebra of type (2, 0) with a binary operation → and a 0-ary operation 0 satisfying the identities (x→y)→z≈x→(y→z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(x\rightarrow y)\rightarrow z\approx x\rightarrow (y\rightarrow z)$\end{document}, (x→y)→z≈(z′→x)→(y→z)′′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(x\rightarrow y)\rightarrow z\approx \left [(z^{\prime }\rightarrow x)\rightarrow (y\rightarrow z)'\right ]'$\end{document} and 0′′≈0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0^{\prime \prime }\approx 0$\end{document} where u′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbf {u}^{\prime }$\end{document} means u→0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbf u\rightarrow 0$\end{document} for any term u. We completely describe the lattice of varieties of implication semigroups. It turns out that this lattice is non-modular and consists of 16 elements.