Communication-efficient algorithms for decentralized and stochastic optimization

被引:4
作者
Guanghui Lan
Soomin Lee
Yi Zhou
机构
[1] Georgia Institute of Technology,Department of Industrial and Systems Engineering
来源
Mathematical Programming | 2020年 / 180卷
关键词
Decentralized optimization; Decentralized machine learning; Communication efficient; Stochastic programming; Nonsmooth functions; Primal–dual method; Complexity; 90C25; 90C06; 90C22; 49M37; 93A14; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. Our major contribution is to present a new class of decentralized primal–dual type algorithms, namely the decentralized communication sliding (DCS) methods, which can skip the inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions. By employing DCS, agents can find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution both in terms of functional optimality gap and feasibility residual in O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon )$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\sqrt{\epsilon })$$\end{document}) communication rounds for general convex functions (resp., strongly convex functions), while maintaining the O(1/ϵ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon ^2)$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(1/\epsilon )$$\end{document}) bound on the total number of intra-node subgradient evaluations. We also present a stochastic counterpart for these algorithms, denoted by SDCS, for solving stochastic optimization problems whose objective function cannot be evaluated exactly. In comparison with existing results for decentralized nonsmooth and stochastic optimization, we can reduce the total number of inter-node communication rounds by orders of magnitude while still maintaining the optimal complexity bounds on intra-node stochastic subgradient evaluations. The bounds on the (stochastic) subgradient evaluations are actually comparable to those required for centralized nonsmooth and stochastic optimization under certain conditions on the target accuracy.
引用
收藏
页码:237 / 284
页数:47
相关论文
共 50 条
  • [41] Communication-Efficient Nonconvex Federated Learning With Error Feedback for Uplink and Downlink
    Zhou, Xingcai
    Chang, Le
    Cao, Jinde
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1003 - 1014
  • [42] Communication-Efficient Federated Learning Based on Secret Sharing and Compressed Sensing
    Chen L.
    Xiao D.
    Yu Z.
    Huang H.
    Li M.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (11): : 2395 - 2407
  • [43] LCEDA: Lightweight and Communication-Efficient Data Aggregation Scheme for Smart Grid
    Su, Yuan
    Li, Yanping
    Li, Jiliang
    Zhang, Kai
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (20): : 15639 - 15648
  • [44] Communication-Efficient Federated Learning Using Censored Heavy Ball Descent
    Chen, Yicheng
    Blum, Rick S.
    Sadler, Brian M.
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 983 - 996
  • [45] PROVABLY COMMUNICATION-EFFICIENT ASYNCHRONOUS DISTRIBUTED INFERENCE FOR CONVEX AND NONCONVEX PROBLEMS
    Ren, Jineng
    Haupt, Jarvis
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 638 - 642
  • [46] Communication Efficient Decentralized Learning Over Bipartite Graphs
    Ben Issaid, Chaouki
    Elgabli, Anis
    Park, Jihong
    Bennis, Mehdi
    Debbah, Merouane
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 4150 - 4167
  • [47] An Empirical Study on Compressed Decentralized Stochastic Gradient Algorithms with Overparameterized Models
    Rao, Arjun Ashok
    Wai, Hoi-To
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 337 - 343
  • [48] Communication-efficient distributed statistical inference on zero-inflated Poisson models
    Wan, Ran
    Bai, Yang
    STATISTICAL THEORY AND RELATED FIELDS, 2024, 8 (02) : 81 - 106
  • [49] Communication-Efficient Secure Distributed Estimation With Noisy Measurement Against FDI Attack
    Zhang, Zhanxi
    Jia, Lijuan
    Peng, Senran
    Yang, Zi-Jiang
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1214 - 1218
  • [50] DQ-SGD: Dynamic Quantization in SGD for Communication-Efficient Distributed Learning
    Yan, Guangfeng
    Huang, Shao-Lun
    Lan, Tian
    Song, Linqi
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 136 - 144