Communication-efficient algorithms for decentralized and stochastic optimization

被引:4
作者
Guanghui Lan
Soomin Lee
Yi Zhou
机构
[1] Georgia Institute of Technology,Department of Industrial and Systems Engineering
来源
Mathematical Programming | 2020年 / 180卷
关键词
Decentralized optimization; Decentralized machine learning; Communication efficient; Stochastic programming; Nonsmooth functions; Primal–dual method; Complexity; 90C25; 90C06; 90C22; 49M37; 93A14; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. Our major contribution is to present a new class of decentralized primal–dual type algorithms, namely the decentralized communication sliding (DCS) methods, which can skip the inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions. By employing DCS, agents can find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution both in terms of functional optimality gap and feasibility residual in O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon )$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\sqrt{\epsilon })$$\end{document}) communication rounds for general convex functions (resp., strongly convex functions), while maintaining the O(1/ϵ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon ^2)$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(1/\epsilon )$$\end{document}) bound on the total number of intra-node subgradient evaluations. We also present a stochastic counterpart for these algorithms, denoted by SDCS, for solving stochastic optimization problems whose objective function cannot be evaluated exactly. In comparison with existing results for decentralized nonsmooth and stochastic optimization, we can reduce the total number of inter-node communication rounds by orders of magnitude while still maintaining the optimal complexity bounds on intra-node stochastic subgradient evaluations. The bounds on the (stochastic) subgradient evaluations are actually comparable to those required for centralized nonsmooth and stochastic optimization under certain conditions on the target accuracy.
引用
收藏
页码:237 / 284
页数:47
相关论文
共 50 条
  • [31] Communication-Efficient Distributed Covariance Sketch, with Application to Distributed PCA
    Huang, Zengfeng
    Lin, Xuemin
    Zhang, Wenjie
    Zhang, Ying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [32] Communication-Efficient Distributed Gradient Descent via Random Projection
    Qi, Haobo
    Gao, Yuan
    STAT, 2024, 13 (04):
  • [33] Differentially Private Decentralized Optimization With Relay Communication
    Wang, Luqing
    Guo, Luyao
    Yang, Shaofu
    Shi, Xinli
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 724 - 736
  • [34] Lazily Aggregated Quantized Gradient Innovation for Communication-Efficient Federated Learning
    Sun, Jun
    Chen, Tianyi
    Giannakis, Georgios B.
    Yang, Qinmin
    Yang, Zaiyue
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (04) : 2031 - 2044
  • [35] A dynamic global backbone updating for communication-efficient personalised federated learning
    Yang, Zhao
    Sun, Qingshuang
    CONNECTION SCIENCE, 2022, 34 (01) : 2240 - 2264
  • [36] FedDD: Toward Communication-Efficient Federated Learning With Differential Parameter Dropout
    Feng, Zhiying
    Chen, Xu
    Wu, Qiong
    Wu, Wen
    Zhang, Xiaoxi
    Huang, Qianyi
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5366 - 5384
  • [37] Layer-Based Communication-Efficient Federated Learning with Privacy Preservation
    Lian, Zhuotao
    Wang, Weizheng
    Huang, Huakun
    Su, Chunhua
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (02) : 256 - 263
  • [38] Ordering for Communication-Efficient Quickest Change Detection in a Decomposable Graphical Model
    Chen, Yicheng
    Blum, Rick S.
    Sadler, Brian M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4710 - 4723
  • [39] COFEL: Communication-Efficient and Optimized Federated Learning with Local Differential Privacy
    Lian, Zhuotao
    Wang, Weizheng
    Su, Chunhua
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [40] An accelerated decentralized stochastic optimization algorithm with inexact model
    Zhang, Xuexue
    Liu, Sanyang
    Zhao, Nannan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 459