Constrained energy problems with applications to orthogonal polynomials of a discrete variable

被引:0
作者
P. D. Dragnev
E. B. Saff
机构
[1] University of South Florida,Department of Mathematics
[2] University of South Florida,Institute for Constructive Mathematics Department of Mathematics
来源
Journal d’Analyse Mathematique | 1997年 / 72卷
关键词
Orthogonal Polynomial; Equilibrium Measure; Energy Problem; Extremal Measure; Admissible Weight;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive measure Σ with gs > 1, we write Με ℳΣ if Μ is a probability measure and Σ—Μ is a positive measure. Under some general assumptions on the constraining measure Σ and a weight functionw, we prove existence and uniqueness of a measure λΣw that minimizes the weighted logarithmic energy over the class ℳΣ. We also obtain a characterization theorem, a saturation result and a balayage representation for the measure λΣw As applications of our results, we determine the (normalized) limiting zero distribution for ray sequences of a class of orthogonal polynomials of a discrete variable. Explicit results are given for the class of Krawtchouk polynomials.
引用
收藏
页码:223 / 259
页数:36
相关论文
共 11 条
  • [1] Erdös P.(1940)On interpolation III Ann. of Math. 41 510-553
  • [2] Turán P.(1935)Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions Thesis, Meddel, Lunds Univ. Mat. Sem. 3 1-118
  • [3] Frostman O.(1995)Krawtchouk polynomials and universal bounds for codes and design in Hamming spaces IEEE Trans. Inform. Theory 41 1303-1321
  • [4] Levenshtein V.(1977)New upper bounds on the rate of a code via the Delsarte—MacWilliams inequalities IEEE Trans. Inform. Theory I-23 157-166
  • [5] McEliece R. J.(1992)Weighted analogues of capacity, transfinite diameter, and Chebyshev constant Constr. Approx. 8 105-124
  • [6] Rodemich E. R.(1996)Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable Mat. Sb. 187 109-124
  • [7] Rumsey H. C.(undefined)undefined undefined undefined undefined-undefined
  • [8] Welch L. R.(undefined)undefined undefined undefined undefined-undefined
  • [9] Mhaskar H. N.(undefined)undefined undefined undefined undefined-undefined
  • [10] Saff E. B.(undefined)undefined undefined undefined undefined-undefined