Strong Convergence of Modified Halpern Iterations in CAT(0) Spaces

被引:0
作者
A Cuntavepanit
B Panyanak
机构
[1] Chiang Mai University,Department of Mathematics, Faculty of Science
[2] Chiang Mai University,Materials Science Research Center, Faculty of Science
来源
Fixed Point Theory and Applications | / 2011卷
关键词
Nonexpansive Mapping; Strong Convergence Theorem; Smooth Banach Space; Complete Space; Geodesic Triangle;
D O I
暂无
中图分类号
学科分类号
摘要
Strong convergence theorems are established for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Our results extend and improve the recent ones announced by Kim and Xu (2005), Hu (2008), Song and Chen (2008), Saejung (2010), and many others.
引用
收藏
相关论文
共 41 条
[1]  
Halpern B(1967)Fixed points of nonexpanding maps Bulletin of the American Mathematical Society 73 957-961
[2]  
Reich S(1974)Some fixed point problems Atti della Accademia Nazionale dei Lincei 57 194-198
[3]  
Lions P-L(1977)Approximation de points fixes de contractions Comptes Rendus de l'Académie des Sciences de Paris A-B 284 A1357-A1359
[4]  
Reich S(1980)Strong convergence theorems for resolvents of accretive operators in Banach spaces Journal of Mathematical Analysis and Applications 75 287-292
[5]  
Takahashi W(1984)On Reich's strong convergence theorems for resolvents of accretive operators Journal of Mathematical Analysis and Applications 104 546-553
[6]  
Ueda Y(1992)Approximation of fixed points of nonexpansive mappings Archiv der Mathematik 58 486-491
[7]  
Wittmann R(1997)Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces Proceedings of the American Mathematical Society 125 3641-3645
[8]  
Shioji N(2002)Iterative algorithms for nonlinear operators Journal of the London Mathematical Society. Second Series 66 240-256
[9]  
Takahashi W(2003)An iterative approach to quadratic optimization Journal of Optimization Theory and Applications 116 659-678
[10]  
Xu H-K(2005)A strong convergence theorem for contraction semigroups in Banach spaces Bulletin of the Australian Mathematical Society 72 371-379