Matsumoto Metrics of Constant Flag Curvature: A Puny Class of Finsler Metrics with Constant Curvature

被引:0
作者
M. Rafie-Rad
B. Rezaei
机构
[1] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[2] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
[3] Urmia University,Department of Mathematics, Faculty of Sciences
来源
Results in Mathematics | 2013年 / 63卷
关键词
53C60; 53B40; Matsumoto metric; constant flag curvature; locally Minkowski metric;
D O I
暂无
中图分类号
学科分类号
摘要
The local structure of Finsler metrics of constant flag curvature have been historically mysterious. It is proved that every Matsumoto metric of constant flag curvature on a closed n-dimensional manifold of dimension n ≥ 3 is either Riemannian or locally Minkowskian.
引用
收藏
页码:475 / 483
页数:8
相关论文
共 12 条
[1]  
Bao D.(2003)On Randers spaces of constant flag curvature Rep. Math. Phys. 51 9-42
[2]  
Robles C.(2003)On the flag curvature of Finsler metrics of scalar curvature J. Lond. Math. Soc. 68 762-780
[3]  
Chen X.(2007)Projectively flat Matsumoto metric and its approximation Acta Math. Sci. Ser. B Engl. Ed. 27 781-789
[4]  
MoShen Z.(1991)The Berwald connection of Finsler with an ( Tensor (N.S.) 50 18-21
[5]  
Li B.(1989), Rep. Math. Phys. 28 249-261
[6]  
Matsumoto M.(2008))-metric Acta Math. Sin. (Engl. Ser.) 24 789-796
[7]  
Matsumoto M.(1977)Randers spaces of constant curvature Rep. Math. Phys. 11 347-360
[8]  
Shen Z.(2010)On Randers metrics of isotropic S-curvature Diff. Geom. Appl. 28 170-193
[9]  
Xing H.(undefined)On Randers metrics of scalar curvature undefined undefined undefined-undefined
[10]  
Yasuda H.(undefined)A local classification of a class of ( undefined undefined undefined-undefined