Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth

被引:0
|
作者
Pelusi M. [1 ]
Luan F. [1 ]
Vo T.D. [1 ]
Lamont M.R.E. [1 ]
Madden S.J. [2 ]
Bulla D.A. [2 ]
Choi D.-Y. [2 ]
Luther-Davies B. [2 ]
Eggleton B.J. [1 ]
机构
[1] Institute for Photonic Optical Sciences (IPOS), School of Physics, University of Sydney
[2] CUDOS, Laser Physics Centre, Australian National University, Canberra
基金
澳大利亚研究理事会;
关键词
D O I
10.1038/nphoton.2009.1
中图分类号
学科分类号
摘要
Signal processing at terahertz speeds calls for an enormous leap in bandwidth beyond the current capabilities of electronics, for which practical operation is currently limited to tens of gigahertz. This can be achieved through all-optical schemes making use of the ultrafast response of (3) nonlinear waveguides. Towards this objective, we have developed compact planar rib waveguides based on As 2 S 3 glass, providing a virtual lumped high nonlinearity in a monolithic platform capable of integrating multiple functions. Here, we apply it to demonstrate, for the first time, a photonic-chip-based, all-optical, radio-frequency spectrum analyser with the performance advantages of distortion-free, broad measurement bandwidth (2.5THz) and flexible wavelength operation (that is, colourless). The key to this is the waveguide's high optical nonlinearity and dispersion-shifted design. Using the device, we characterize high-bit-rate (320Gbs 1) optical signals impaired by various distortions. The demonstrated ultrafast, broadband capability highlights the potential for integrated chip-based signal processing at bit rates approaching and beyond Tb s 1.
引用
收藏
页码:139 / 143
页数:4
相关论文
共 50 条
  • [1] Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth
    Pelusi, Mark
    Luan, Feng
    Vo, Trung D.
    Lamont, Michael R. E.
    Madden, Steven J.
    Bulla, Douglas A.
    Choi, Duk-Yong
    Luther-Davies, Barry
    Eggleton, Benjamin J.
    NATURE PHOTONICS, 2009, 3 (03) : 139 - 143
  • [2] Photonic-chip-based frequency combs
    Gaeta, Alexander L.
    Lipson, Michal
    Kippenberg, Tobias J.
    NATURE PHOTONICS, 2019, 13 (03) : 158 - 169
  • [3] Silicon Nanowire Based Radio-Frequency Spectrum Analyser
    Corcoran, B.
    Vo, T. D.
    Pelusi, M.
    Monat, C.
    Xu, D-X.
    Densmore, A.
    Ma, R.
    Janz, S.
    Moss, D. J.
    Eggleton, B. J.
    2010 7TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2010, : 365 - 367
  • [4] Silicon Nanowire Based Radio-Frequency Spectrum Analyser
    Corcoran, B.
    Vo, T. D.
    Pelusi, M.
    Monat, C.
    Xu, D-X.
    Densmore, A.
    Ma, R.
    Janz, S.
    Moss, D. J.
    Eggleton, B. J.
    2010 36TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC), VOLS 1 AND 2, 2010,
  • [5] Photonic-chip-based frequency combs
    Alexander L. Gaeta
    Michal Lipson
    Tobias J. Kippenberg
    Nature Photonics, 2019, 13 : 158 - 169
  • [6] Demonstration of a radio-frequency spectrum analyser based on spectral hole burning
    Lorgeré, I
    Ménager, L
    Lavielle, V
    Le Gouët, JL
    Dolfi, D
    Tonda, S
    Huignard, JP
    JOURNAL OF MODERN OPTICS, 2002, 49 (14-15) : 2459 - 2475
  • [7] Comb-based radio-frequency photonic filtering with 20 ns bandwidth reconfiguration
    Wu, Rui
    Song, Minhyup
    Leaird, Daniel E.
    Weiner, Andrew M.
    OPTICS LETTERS, 2013, 38 (15) : 2735 - 2738
  • [8] Photonic-chip-based dense entanglement distribution
    Shang-Yu Ren
    Wei-Qiang Wang
    Yu-Jie Cheng
    Long Huang
    Bing-Zheng Du
    Wei Zhao
    Guang-Can Guo
    Lan-Tian Feng
    Wen-Fu Zhang
    Xi-Feng Ren
    PhotoniX, 4
  • [9] Chip-Based Radio-Frequency Tag
    Zheleznikova, Olga E.
    Mikaeva, Svetlana A.
    Mikaeva, Angela S.
    Reznik, Alexander A.
    HELIX, 2019, 9 (05): : 5583 - 5589
  • [10] Photonic-chip-based dense entanglement distribution
    Ren, Shang-Yu
    Wang, Wei-Qiang
    Cheng, Yu-Jie
    Huang, Long
    Du, Bing-Zheng
    Zhao, Wei
    Guo, Guang-Can
    Feng, Lan-Tian
    Zhang, Wen-Fu
    Ren, Xi-Feng
    PHOTONIX, 2023, 4 (01)