On the Lattice Structure of Pseudorandom Numbers Generated over Arbitrary Finite Fields

被引:0
作者
Harald Niederreiter
Arne Winterhof
机构
[1] Department of Mathematics,
[2] National University of Singapore,undefined
[3] 2 Science Drive 2,undefined
[4] Singapore 117543,undefined
[5] Republic of Singapore (e-mail: nied@math.nus.edu.sg),undefined
[6] Institute of Discrete Mathematics,undefined
[7] Austrian Academy of Sciences,undefined
[8] Sonnenfelsgasse 19,undefined
[9] 1010 Vienna,undefined
[10] Austria (e-mail: arne.winterhof@oeaw.ac.at),undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2001年 / 12卷
关键词
Keywords: Pseudorandom number generator, Nonlinear method, Marsaglia's lattice test.;
D O I
暂无
中图分类号
学科分类号
摘要
Marsaglia's lattice test for congruential pseudorandom number generators modulo a prime is extended to a test for generators over arbitrary finite fields. A congruential generator η0,η1,…, generated by ηn=g(n), n = 0, 1,…, passes Marsaglia's s-dimensional lattice test if and only if s≤ deg(g). It is investigated how far this conditin holds true for polynomials over arbitrary finite fields Fq, particularly for polynomials of the form gd(x)=α(x+β)d+γ, α, β, γ∈Fq, α≠ 0, 1 ≤d≤q− 1.
引用
收藏
页码:265 / 272
页数:7
相关论文
empty
未找到相关数据