Dirichlet problem for a nonlocal wave equation

被引:0
作者
O. Kh. Masaeva
机构
[1] Russian Academy of Sciences,Research Institute of Applied Mathematics and Automation, Kabardino
来源
Differential Equations | 2013年 / 49卷
关键词
Dirichlet Problem; Fractional Order; Fractional Derivative; Uniform Convergence; Regular Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Dirichlet problem for a nonlocal wave equation in a rectangular domain. We prove the existence and uniqueness of a solution of the problem and show that determining whether the solution is unique can be reduced to determining whether a function of Mittag-Leffler type has real zeros. The obtained uniqueness condition turns into the uniqueness condition for the solution of the Dirichlet problem for the wave equation as the order of the fractional derivative in the equation tends to 2.
引用
收藏
页码:1518 / 1523
页数:5
相关论文
共 6 条
[1]  
Pskhu AV(2009)The Fundamental Solution of a Diffusion-Wave Equation of Fractional Order Izv. Ross. Akad. Nauk Ser. Mat. 73 141-182
[2]  
Bourgin DG(1939)The Dirichlet Problem for the Vibrating String Equation Bull. Amer. Math. Soc. 45 851-858
[3]  
Duffin R(1970)Uniqueness Criterion for a Solution of the Dirichlet Problem for an Equation of Mixed Type Differ. Uravn. 6 190-191
[4]  
Nakhushev AM(2005)On the Real Zeros of a Function of Mittag-Leffler Type Mat. Zametki 77 592-599
[5]  
Pskhu AV(2006)On the Number of Real Eigenvalues of a Boundary Value Problem for a Second-Order Equation with a Fractional Derivative Fundam. Prikl. Mat. 12 137-155
[6]  
Popov AYu(undefined)undefined undefined undefined undefined-undefined