Compact operators in the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebra generated by a matrix weighted shift

被引:0
作者
Dianlu Tian
Lining Jiang
机构
[1] Beijing Institute of Technology,
关键词
Compact operator; Matrix weighted shift operator; C; -algebra; 47C10; 47A58; 47A45;
D O I
10.1007/s43034-020-00074-w
中图分类号
学科分类号
摘要
Complex symmetry operators have notable applications in extension and dilation results, rank one perturbations of Jordan operators, matrix-valued inner functions and free interpolation theory in the disk and so on. While in the study of the complex symmetric operators, one of the problems one always encounters is when a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebra singly generated contains no nonzero compact operators. In this paper, we answer this question recur to matrix weighted shift operators.
引用
收藏
页码:1158 / 1169
页数:11
相关论文
共 15 条
  • [1] Garcia SR(2013)On the closure of the complex symmetric operators: compact operators and weighted shifts J. Funct. Anal. 264 691-712
  • [2] Poore DE(2005)Complex symmetric operators and applications Trans. Am. Math. Soc. 358 1285-1315
  • [3] Garcia SR(2007)Complex symmetric operators and applications II Trans. Am. Math. Soc. 359 3913-3931
  • [4] Putinar M(2015)A C Trans. Am. Math. Soc. 367 6903-6942
  • [5] Garcia SR(1996)-algebra approach to complex symmetric operators Am. Math. Soc 6 1-173
  • [6] Putinar M(1971)Davidson, C Bull. Aust. Math. Soc. 5 157-36
  • [7] Guo KY(2010)-algebras by examples Banach J. Math. Anal. 4 11-1580
  • [8] Ji YQ(2014)Unitary equivalence and reducibility of invertibly weighted shifts Complex Anal. Oper. Theory 8 1565-530
  • [9] Zhu S(2013)On a J-polar decomposition of a bounded operator and matrices of Trans. Am. Math. Soc. 365 511-undefined
  • [10] Kenneth R(undefined)-symmetric and undefined undefined undefined-undefined