The Zero-Divisor Graph of a Lattice

被引:0
作者
E. Estaji
K. Khashyarmanesh
机构
[1] Ferdowsi University of Mashhad,Department of Pure Mathematics
来源
Results in Mathematics | 2012年 / 61卷
关键词
Primary 05C75; 06E99; Secondary 13M99; Zero-divisor graph; lattice; atom in a lattice;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite bounded lattice £, we associate a zero-divisor graph G(£) which is a natural generalization of the concept of zero-divisor graph for a Boolean algebra. Also, we study the interplay of lattice-theoretic properties of £ with graph-theoretic properties of G(£).
引用
收藏
页码:1 / 11
页数:10
相关论文
共 17 条
  • [1] Anderson D.D.(1993)Beck’s coloring of a commutative ring J. Algebra 159 500-514
  • [2] Naseer M.(2003)Zero-divisor graphs, von Neumann regular rings, and Boolean algebras J. Pure Appl. Algebra 180 221-241
  • [3] Anderson D.F.(1999)The zero-divisor graph of a commutative ring J. Algebra 217 434-447
  • [4] Levy R.(1988)Coloring of commutative rings J. Algebra 116 208-226
  • [5] Shapiro J.(2002)The zero-divisor graph of a commutative semigroup Semigroup Forum 65 206-214
  • [6] Anderson D.F.(2009)On Beck’s coloring of posets Discrete Math. 309 4584-4589
  • [7] Livingston P.S.(2007)Complemented zero-divisor graphs and Boolean rings J. Algebra 315 600-611
  • [8] Beck I.(2002)The zero-divisor graph of von Neumann regular rings Commun. Algebra 30 745-750
  • [9] DeMeyer F.R.(2002)Cycles and symmetries of zero-divisors Commun. Algebra 30 3533-3558
  • [10] McKenzie T.(undefined)undefined undefined undefined undefined-undefined