Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner’s Contraction

被引:0
作者
Erik D. Demaine
MohammadTaghi Hajiaghayi
Ken-ichi Kawarabayashi
机构
[1] MIT Computer Science and Artificial Intelligence Laboratory,Department of Computer Science
[2] Carnegie Mellon University,undefined
[3] National Institute of Informatics,undefined
来源
Algorithmica | 2009年 / 54卷
关键词
Graph minors; Graph algorithms; Grid graphs; Treewidth; Bidimensionality; Wagner’s conjecture;
D O I
暂无
中图分类号
学科分类号
摘要
We explore three important avenues of research in algorithmic graph-minor theory, which all stem from a key min-max relation between the treewidth of a graph and its largest grid minor. This min-max relation is a keystone of the Graph Minor Theory of Robertson and Seymour, which ultimately proves Wagner’s Conjecture about the structure of minor-closed graph properties.
引用
收藏
页码:142 / 180
页数:38
相关论文
共 88 条
[81]  
Seymour P.D.(undefined)undefined undefined undefined undefined-undefined
[82]  
Robertson N.(undefined)undefined undefined undefined undefined-undefined
[83]  
Seymour P.D.(undefined)undefined undefined undefined undefined-undefined
[84]  
Thomas R.(undefined)undefined undefined undefined undefined-undefined
[85]  
Seymour P.D.(undefined)undefined undefined undefined undefined-undefined
[86]  
Thomas R.(undefined)undefined undefined undefined undefined-undefined
[87]  
Thomas R.(undefined)undefined undefined undefined undefined-undefined
[88]  
Thomson J.M.(undefined)undefined undefined undefined undefined-undefined