Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature

被引:0
|
作者
Joshua J. Mulhollem
Cory D. Suski
David H. Wahl
机构
[1] Illinois Natural History Survey,Kaskaskia Biological Station
[2] University of Illinois,Department of Natural Resources and Environmental Sciences
[3] University of Illinois at Urbana-Champaign,Department of Natural Resources and Environmental Sciences
来源
Fish Physiology and Biochemistry | 2015年 / 41卷
关键词
Temperature tolerance; Heat shock; Largemouth bass; Plasma cortisol; Plasma glucose; Chronic thermal maxima;
D O I
暂无
中图分类号
学科分类号
摘要
Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2–5 °C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8 °C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups.
引用
收藏
页码:833 / 842
页数:9
相关论文
共 50 条
  • [41] Latitudinal variation in the geometric morphology of the largemouth bass, Micropterus salmoides
    Hall, Elijah S.
    Martin, Benjamin E.
    Brubaker, Kristen
    Grant, Christopher J.
    MARINE AND FRESHWATER RESEARCH, 2018, 69 (09) : 1480 - 1485
  • [42] Survival of Foul-Hooked Largemouth Bass (Micropterus salmoides)
    Pope, Kevin L.
    Wilde, Gene R.
    JOURNAL OF FRESHWATER ECOLOGY, 2010, 25 (01) : 135 - 139
  • [43] BEHAVIORAL THERMOREGULATION OF LARGEMOUTH BASS (MICROPTERUS-SALMOIDES) IN A RESERVOIR RECEIVING THERMAL EFFLUENT
    BENNETT, DH
    ARCHIV FUR HYDROBIOLOGIE, 1979, 86 (02): : 193 - 203
  • [44] The role of TNF-α in the phagocytosis of largemouth bass (Micropterus salmoides)
    Yang, Shun
    Ma, Yuanxin
    Lou, Xiaocong
    Zhou, Zhewei
    Zhang, Huimin
    Yi, Shunfa
    Cheng, Yan
    Qian, Shichao
    Huang, Mengmeng
    Fei, Hui
    FISH & SHELLFISH IMMUNOLOGY, 2023, 132
  • [45] INDUCED SPAWNING OF LARGEMOUTH BASS [MICROPTERUS-SALMOIDES (LACEPEDE)]
    CARLSON, AR
    TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY, 1973, 102 (02) : 442 - 444
  • [46] HOOKING MORTALITY OF JUVENILE LARGEMOUTH BASS, MICROPTERUS-SALMOIDES
    PELZMAN, RJ
    CALIFORNIA FISH AND GAME, 1978, 64 (03): : 185 - 188
  • [47] The dynamics of aerial and aquatic feeding in largemouth bass (Micropterus salmoides)
    Axlid, Erik
    Higham, Tim
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2024, 64 : S28 - S28
  • [48] Effects of Astaxanthin on Ovarian Development of Largemouth Bass (Micropterus salmoides)
    Tao, Mingwei
    Zhou, Hangxian
    Wei, Jie
    Xu, Qiyou
    AQUACULTURE NUTRITION, 2024, 2024
  • [49] Retrospect of fishmeal substitution in largemouth bass (Micropterus salmoides): a review
    Liu, Yuanyi
    Pu, Changchang
    Pei, Zhuo
    Zhang, Weichuan
    Wei, Zihui
    Chen, Hongyu
    Huang, Yong
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2025, 51 (01) : 1 - 17
  • [50] Maternally transferred mercury in wild largemouth bass, Micropterus salmoides
    Sackett, Dana K.
    Aday, D. Derek
    Rice, James A.
    Cope, W. Gregory
    ENVIRONMENTAL POLLUTION, 2013, 178 : 493 - 497