Four-dimensional double-singular oscillator

被引:0
|
作者
M. Petrosyan
机构
[1] Artsakh State University,
[2] Stepanakert,undefined
[3] and Yerevan State University,undefined
来源
Physics of Atomic Nuclei | 2008年 / 71卷
关键词
03.65.Fd; 45.20.Jj;
D O I
暂无
中图分类号
学科分类号
摘要
The Schrödinger equation for the four-dimensional double-singular oscillator is separable in Eulerian, double-polar, and spheroidal coordinates in ℝ4. It is shown that the coefficients for the expansion of the double-polar basis in terms of the Eulerian basis can be expressed through the Klebsch-Gordan coefficients of the group SU(2) analytically continued to real values of their arguments. The coefficients for the expansions of the spheroidal basis in terms of the Eulerian and double-polar bases are proved to satisfy three-term recursion relations.
引用
收藏
页码:1094 / 1101
页数:7
相关论文
共 50 条
  • [1] Four-dimensional double-singular oscillator
    Petrosyan, M.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (06) : 1094 - 1101
  • [2] Four-dimensional singular oscillator and generalized MIC-Kepler system
    L. G. Mardoyan
    M. G. Petrosyan
    Physics of Atomic Nuclei, 2007, 70 : 572 - 575
  • [3] Four-dimensional singular oscillator and generalized MIC-Kepler system
    Mardoyan, L. G.
    Petrosyan, M. G.
    PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) : 572 - 575
  • [4] Oscillator potential for the four-dimensional Hall effect
    Mardoyan, L
    Nersessian, A
    PHYSICAL REVIEW B, 2005, 72 (23)
  • [5] Lattices in the Four-Dimensional Hyperbolic Oscillator Group
    Galiay, Blandine
    Kath, Ines
    JOURNAL OF LIE THEORY, 2022, 32 (04) : 1139 - 1170
  • [6] Four-dimensional gravity from singular spaces
    Brax, P
    van de Bruck, C
    Davis, AC
    Rhodes, CS
    PHYSICAL REVIEW D, 2002, 65 (12)
  • [7] Totally Geodesic and Parallel Hypersurfaces of Four-Dimensional Oscillator Groups
    Giovanni Calvaruso
    Joeri Van der Veken
    Results in Mathematics, 2013, 64 : 135 - 153
  • [8] A four-dimensional chaotic system and its oscillator circuit designad
    Liu, Ling
    Liu, Chong-Xin
    Zhang, Yan-Bin
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [9] A four-dimensional memristor chaotic system based on Colpitts oscillator
    Li, Shen
    Dong, Enzeng
    Zhang, Zufeng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4837 - 4842
  • [10] Totally Geodesic and Parallel Hypersurfaces of Four-Dimensional Oscillator Groups
    Calvaruso, Giovanni
    Van der Veken, Joeri
    RESULTS IN MATHEMATICS, 2013, 64 (1-2) : 135 - 153