A weighted and balanced FEM for singularly perturbed reaction-diffusion problems
被引:0
作者:
Niall Madden
论文数: 0引用数: 0
h-index: 0
机构:National University of Ireland Galway,School of Mathematics, Statistics and Applied Mathematics
Niall Madden
Martin Stynes
论文数: 0引用数: 0
h-index: 0
机构:National University of Ireland Galway,School of Mathematics, Statistics and Applied Mathematics
Martin Stynes
机构:
[1] National University of Ireland Galway,School of Mathematics, Statistics and Applied Mathematics
[2] Beijing Computational Science Research Center,Division of Applied and Computational Mathematics
来源:
Calcolo
|
2021年
/
58卷
关键词:
Finite element method;
Balanced norm;
Quasioptimal;
65N30;
65N12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A new finite element method is presented for a general class of singularly perturbed reaction-diffusion problems -ε2Δu+bu=f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\varepsilon ^2\varDelta u +bu=f$$\end{document} posed on bounded domains Ω⊂Rk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varOmega \subset \mathbb {R}^k$$\end{document} for k≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 1$$\end{document}, with the Dirichlet boundary condition u=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u=0$$\end{document} on ∂Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\partial \varOmega$$\end{document}, where 0<ε≪1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0 <\varepsilon \ll 1$$\end{document}. The method is shown to be quasioptimal (on arbitrary meshes and for arbitrary conforming finite element spaces) with respect to a weighted norm that is known to be balanced when one has a typical decomposition of the unknown solution into smooth and layer components. A robust (i.e., independent of ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}) almost first-order error bound for a particular FEM comprising piecewise bilinears on a Shishkin mesh is proved in detail for the case where Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varOmega$$\end{document} is the unit square in R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^2$$\end{document}. Numerical results illustrate the performance of the method.