A weighted and balanced FEM for singularly perturbed reaction-diffusion problems

被引:0
作者
Niall Madden
Martin Stynes
机构
[1] National University of Ireland Galway,School of Mathematics, Statistics and Applied Mathematics
[2] Beijing Computational Science Research Center,Division of Applied and Computational Mathematics
来源
Calcolo | 2021年 / 58卷
关键词
Finite element method; Balanced norm; Quasioptimal; 65N30; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
A new finite element method is presented for a general class of singularly perturbed reaction-diffusion problems -ε2Δu+bu=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\varepsilon ^2\varDelta u +bu=f$$\end{document} posed on bounded domains Ω⊂Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \subset \mathbb {R}^k$$\end{document} for k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, with the Dirichlet boundary condition u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=0$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega$$\end{document}, where 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 <\varepsilon \ll 1$$\end{document}. The method is shown to be quasioptimal (on arbitrary meshes and for arbitrary conforming finite element spaces) with respect to a weighted norm that is known to be balanced when one has a typical decomposition of the unknown solution into smooth and layer components. A robust (i.e., independent of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}) almost first-order error bound for a particular FEM comprising piecewise bilinears on a Shishkin mesh is proved in detail for the case where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega$$\end{document} is the unit square in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. Numerical results illustrate the performance of the method.
引用
收藏
相关论文
共 31 条
[1]  
Adler J(2016)A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh IMA J. Numer. Anal. 36 1281-1309
[2]  
MacLachlan S(2006)Numerical solution of a two-dimensional singularly perturbed reaction–diffusion problem with discontinuous coefficients Appl. Math. Comput. 182 631-643
[3]  
Madden N(2020)A dual finite element method for a singularly perturbed reaction–diffusion problem SIAM J. Numer. Anal. 58 1654-1673
[4]  
Brayanov IA(2005)A parameter robust numerical method for a two dimensional reaction–diffusion problem Math. Comput. 74 1743-1758
[5]  
Cai Z(2010)Interior layers in a reaction-diffusion equation with a discontinuous diffusion coefficient Int. J. Numer. Anal. Model 7 444-461
[6]  
Ku J(2014)Error estimation in a balanced norm for a convection–diffusion problem with two different boundary layers Calcolo 51 423-440
[7]  
Clavero C(1990)Differentiability properties of solutions of the equation SIAM J. Math. Anal. 21 394-408
[8]  
Gracia JL(2017) in a square SIAM J. Numer. Anal. 55 1218-1242
[9]  
O’Riordan E(2008)A robust DPG method for singularly perturbed reaction–diffusion problems SIAM J. Numer. Anal. 46 1602-1618
[10]  
de Falco C(2012)Maximum norm a posteriori error estimate for a 2D singularly perturbed semilinear reaction–diffusion problem SIAM J. Numer. Anal. 50 2729-2743