A novel nomogram model to predict the overall survival of patients with retroperitoneal leiomyosarcoma: a large cohort retrospective study

被引:0
作者
Chao Huang
Qiu-Ping Yu
Hao Li
Zichuan Ding
Zongke Zhou
Xiaojun Shi
机构
[1] West China Hospital of Sichuan University,Department of Orthopaedics
[2] West China Hospital of Sichuan University,Health Management Center
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Retroperitoneal leiomyosarcomas (RLS) are the second most common type of retroperitoneal sarcoma and one of the most aggressive tumours. The lack of early warning signs and delay in regular checkups lead to a poor prognosis. This study aims to create a nomogram to predict RLS patients' overall survival (OS). Patients diagnosed with RLS in the Surveillance, Epidemiology, and End Results (SEER) database between 2000 and 2018 were enrolled in this study. First, univariable and multivariable Cox regression analyses were used to identify independent prognostic factors, followed by constructing a nomogram to predict patients' OS at 1, 3, and 5 years. Secondly, the nomogram's distinguishability and prediction accuracy were assessed using receiver operating characteristic (ROC) and calibration curves. Finally, the decision curve analysis (DCA) investigated the nomogram's clinical utility. The study included 305 RLS patients, and they were divided into two groups at random: a training set (216) and a validation set (89). The training set's multivariable Cox regression analysis revealed that surgery, tumour size, tumour grade, and tumour stage were independent prognostic factors. ROC curves demonstrated that the nomogram had a high degree of distinguishability. In the training set, area under the curve (AUC) values for 1, 3, and 5 years were 0.800, 0.806, and 0.788, respectively, while in the validation set, AUC values for 1, 3, and 5 years were 0.738, 0.780, and 0.832, respectively. As evidenced by the calibration curve, the nomogram had high prediction accuracy. Moreover, DCA revealed that the nomogram had high clinical utility. Furthermore, the risk stratification system based on the nomogram could effectively categorise patients into three mortality risk subgroups. Therefore, the developed nomogram and risk stratification system may aid in optimising the treatment decisions of RLS patients to improve treatment prognosis and maximise their healthcare outcomes.
引用
收藏
相关论文
共 74 条
[31]  
Wu C(2020)A nomogram for predicting overall survival in patients with uterine leiomyosarcoma: A SEER population-based study Future Oncol. 160 1628-1083
[32]  
Wang N(2016)Predictors of improved survival for patients with retroperitoneal sarcoma Surgery 250 970-180
[33]  
Zhou H(2009)Predictors of survival after resection of retroperitoneal sarcoma: A population-based analysis and critical appraisal of the AJCC staging system Ann. Surg. 33 376-1377
[34]  
Wang T(2007)Primary malignant retroperitoneal tumors: Analysis of a single institutional experience Eur. J. Surg. Oncol. 14 565-581
[35]  
Zhao D(2014)Optimal management of primary retroperitoneal sarcoma: An update Expert Rev. Anticancer Ther. 23 1067-undefined
[36]  
Shi H(2012)Frontline extended surgery is associated with improved survival in retroperitoneal low- to intermediate-grade soft tissue sarcomas Ann. Oncol. 43 577-undefined
[37]  
Wang C(1997)Neoadjuvant CYVADIC (cyclophosphamide, vincristine, adriamycin and dacarbazine) therapy for retroperitoneal leiomyosarcoma: A case report Hinyokika Kiyo 85 1077-undefined
[38]  
Lin Z(1999)Leiomyosarcoma of the inferior vena cava: Prognosis and comparison with leiomyosarcoma of other anatomic sites Cancer 168 e173-undefined
[39]  
Yan S(2011)Lack of survival benefit following adjuvant radiation in patients with retroperitoneal sarcoma: A SEER analysis J. Surg. Res. 21 1366-undefined
[40]  
Zhang J(2020)Preoperative radiotherapy plus surgery versus surgery alone for patients with primary retroperitoneal sarcoma (EORTC-62092: STRASS): A multicentre, open-label, randomised, phase 3 trial Lancet Oncol. 113 573-undefined