Probabilistic values on convex geometries

被引:0
作者
J.M. Bilbao
E. Lebrón
N. Jiménez
机构
来源
Annals of Operations Research | 1998年 / 84卷
关键词
Cooperative Game; Closure Operator; Maximal Chain; Order Ideal; Convex Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A game on a convex geometry is a real-valued function defined on the family L of the closed sets of a closure operator which satisfies the finite Minkowski-Krein-Milmanproperty. If L is the Boolean algebra 2N, then we obtain an n-person cooperative game. We will extend the work of Weber on probabilistic values to games on convex geometries. As a result, we obtain a family of axioms that give rise to several probabilistic values and a unique Shapley value for games on convex geometries.
引用
收藏
页码:79 / 95
页数:16
相关论文
共 15 条
  • [1] Borm P.(1992)The position value for communication situations SIAM J. Discrete Math. 5 305-320
  • [2] Owen G.(1985)The theory of convex geometries Geom. Dedicata 19 247-270
  • [3] Tijs S.(1988)Combinatorial representation and convex dimension of convex geometries Order 5 23-32
  • [4] Edelman P.H.(1997)A note on voting Math. Social Sciences 34 37-50
  • [5] Jamison R.E.(1992)The Shapley value for cooperative games under precedence constraints Int. J. Game Theory 21 249-266
  • [6] Edelman P.H.(1977)Graphs and cooperation in games Math. Oper. Res. 2 225-229
  • [7] Sacks M.E.(1980)Conference structures and fair allocation rules Int. J. Game Theory 9 169-182
  • [8] Edelman P.H.(1991)On the convexity of communication games Int. J. Game Theory 19 421-430
  • [9] Faigle U.(1986)Values of graph-restricted games SIAM J. Alg. Disc. Meth. 7 210-20
  • [10] Kern W.(undefined)undefined undefined undefined undefined-undefined