Intersecting surface defects and instanton partition functions

被引:0
作者
Yiwen Pan
Wolfger Peelaers
机构
[1] Uppsala University,Department of Physics and Astronomy
[2] Rutgers University,New High Energy Theory Center
来源
Journal of High Energy Physics | / 2017卷
关键词
Extended Supersymmetry; Nonperturbative Effects; Solitons Monopoles and Instantons; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze intersecting surface defects inserted in interacting four-dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
引用
收藏
相关论文
共 96 条
[11]  
Le Floch B(2012) × S JHEP 08 034-undefined
[12]  
Lee S(2016)5d Higgs Branch Localization, Seiberg-Witten Equations and Contact Geometry JHEP 04 183-undefined
[13]  
Benini F(2013)The equivariant A-twist and gauged linear σ-models on the two-sphere JHEP 10 018-undefined
[14]  
Peelaers W(2010)Ellipsoid partition function from Seiberg-Witten monopoles Lett. Math. Phys. 91 167-undefined
[15]  
Peelaers W(2009)N = 2 dualities JHEP 11 002-undefined
[16]  
Pan Y(2010)M2-brane surface operators and gauge theory dualities in Toda JHEP 01 113-undefined
[17]  
Closset C(1994)Surface defects, the superconformal index and q-deformed Yang-Mills Math. Res. Lett. 1 769-undefined
[18]  
Cremonesi S(2012)Liouville Correlation Functions from Four-dimensional Gauge Theories Commun. Math. Phys. 313 71-undefined
[19]  
Park DS(2012)A(N − 1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories JHEP 09 033-undefined
[20]  
Pan Y(2003)Loop and surface operators in N = 2 gauge theory and Liouville modular geometry Adv. Theor. Math. Phys. 7 831-undefined