Intersecting surface defects and instanton partition functions

被引:0
作者
Yiwen Pan
Wolfger Peelaers
机构
[1] Uppsala University,Department of Physics and Astronomy
[2] Rutgers University,New High Energy Theory Center
来源
Journal of High Energy Physics | / 2017卷
关键词
Extended Supersymmetry; Nonperturbative Effects; Solitons Monopoles and Instantons; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze intersecting surface defects inserted in interacting four-dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
引用
收藏
相关论文
共 96 条
  • [1] Wilson KG(1974)Confinement of Quarks Phys. Rev. D 10 2445-undefined
  • [2] Gaiotto D(2013)Bootstrapping the superconformal index with surface defects JHEP 01 022-undefined
  • [3] Rastelli L(2016)Surface defects and instanton partition functions JHEP 10 012-undefined
  • [4] Razamat SS(2015)Partition Functions of Commun. Math. Phys. 334 1483-undefined
  • [5] Gaiotto D(2013) Gauge Theories on S JHEP 05 093-undefined
  • [6] Kim H-C(2014) and Vortices JHEP 05 030-undefined
  • [7] Benini F(2014)Exact Results in D = 2 Supersymmetric Gauge Theories JHEP 08 060-undefined
  • [8] Cremonesi S(2015)Higgs branch localization in three dimensions JHEP 01 145-undefined
  • [9] Doroud N(2015)Higgs branch localization of JHEP 06 076-undefined
  • [10] Gomis J(2015) theories on S JHEP 10 183-undefined