Estimates on the Green’s Function and Existence of Positive Solutions of Nonlinear Singular Elliptic Equations in the Half Space

被引:0
作者
Imed Bachar
Habib Mâagli
机构
[1] Campus Universitaire,Département de mathématiques, Faculté des Sciences de Tunis
来源
Positivity | 2005年 / 9卷
关键词
Green function; singular elliptic equation; schauder fixed point theorem; maximum principle; superharmonic function;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a new 3G-Theorem for the Green’s function for the half space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}_{+} := \{x = (x_{1},\ldots,x_{n}) \in \mathbb{R}^{n} : x_{n} > 0\}, (n \geq 3).$$\end{document} We exploit this result to introduce a new class of potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(\mathbb{R}^{n}_{+})$$\end{document} that we characterize by means of the Gauss semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}_{+}$$\end{document}. Next, we define a subclass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\infty}(\mathbb{R}^{n}_{+})$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(\mathbb{R}^{n}_{+})$$\end{document} and we study it. In particular, we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\infty}(\mathbb{R}^{n}_{+})$$\end{document} properly contains the classical Kato class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\infty_n (\mathbb{R}^{n}_{+})$$\end{document}. Finally, we study the existence of positive continuous solutions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}_{+}$$\end{document} of the following nonlinear elliptic problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} \Delta u + h(., u) = 0,\\hbox{in}\mathbb{R}^{n}_{+} \ \hbox{(in the sense of distributions)},&\\ u|_{\partial\mathbb{R}^{n}_{+}} = 0, &\end{array}\right.$$\end{document} where h is a Borel measurable function in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}_{+} \times (0,\infty),$$\end{document} satisfying some appropriate conditions related to the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\infty}(\mathbb{R}^{n}_{+})$$\end{document}.
引用
收藏
页码:153 / 192
页数:39
相关论文
共 19 条
  • [1] Aizenman M.(1982)Brownian motion and Harnack inequality for Schrödinger operators Comm. Pure Appl. Math XXXV 209-273
  • [2] Simon B.(1989)Entire solutions of singular elliptic equations J. Math. Anal. Appl. 139 523-532
  • [3] Edelson A.L.(1999)Nonlinear equations and weighted norm inequalities Trans. Am. Math. Society. 351 3441-3497
  • [4] Kalton N. J.(1996)Entire solutions of a singular semilinear elliptic problem J. Math. Anal. Appl. 200 498-505
  • [5] Verbitsky I. E.(1997)Classical and weak solutions of a singular semilinear elliptic problem J. Math. Anal. Appl. 11 371-385
  • [6] Lair A. V.(1991)On a singular nonlinear elliptic boundary-value problem Proc. Am. Mat. Soc. 111 721-730
  • [7] Shaker A. W.(2001)Existence and estimates of solutions for singular nonlinear elliptic problems J. Math. Anal. Appl. 263 522-542
  • [8] Lair A. V.(1982)Schrödinger semi-groups Bull. Am. Math. Soc. 7 447-526
  • [9] Shaker A. W.(1998)Positive solutions of nonlinear elliptic equations in the euclidien plane Proc. Am. Math. Society. 126 3681-3692
  • [10] Lazer A. C.(1992)Subcriticality and gaugeability of the schrödinger operator Trans. Am. Math. Society. 334 75-96