Finite-part integrals over polygons by an 8-node quadrilateral spline finite element
被引:0
|
作者:
Chong-Jun Li
论文数: 0引用数: 0
h-index: 0
机构:Dalian University of Technology,School of Mathematical Sciences
Chong-Jun Li
Vittoria Demichelis
论文数: 0引用数: 0
h-index: 0
机构:Dalian University of Technology,School of Mathematical Sciences
Vittoria Demichelis
Catterina Dagnino
论文数: 0引用数: 0
h-index: 0
机构:Dalian University of Technology,School of Mathematical Sciences
Catterina Dagnino
机构:
[1] Dalian University of Technology,School of Mathematical Sciences
[2] University of Torino,Department of Mathematics
来源:
BIT Numerical Mathematics
|
2010年
/
50卷
关键词:
Finite part integral;
Cauchy principal value;
Spline finite element method;
Bivariate splines;
65D05;
65D07;
65D30;
65D32;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we consider the numerical integration on a polygonal domain Ω in ℝ2 of a function F(x,y) which is integrable except at a point \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P_{0}=(x_{0},y_{0})\in{\stackrel{\circ}{\Omega}}$\end{document}, where F becomes infinite of order two. We approximate either the finite-part or the two-dimensional Cauchy principal value of the integral by using a spline finite element method combined with a subdivision technique also of adaptive type. We prove the convergence of the obtained sequence of cubatures. Finally, to illustrate the behaviour of the proposed method, we present some numerical examples.