Finite-part integrals over polygons by an 8-node quadrilateral spline finite element

被引:0
|
作者
Chong-Jun Li
Vittoria Demichelis
Catterina Dagnino
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] University of Torino,Department of Mathematics
来源
BIT Numerical Mathematics | 2010年 / 50卷
关键词
Finite part integral; Cauchy principal value; Spline finite element method; Bivariate splines; 65D05; 65D07; 65D30; 65D32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the numerical integration on a polygonal domain Ω in ℝ2 of a function F(x,y) which is integrable except at a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{0}=(x_{0},y_{0})\in{\stackrel{\circ}{\Omega}}$\end{document}, where F becomes infinite of order two. We approximate either the finite-part or the two-dimensional Cauchy principal value of the integral by using a spline finite element method combined with a subdivision technique also of adaptive type. We prove the convergence of the obtained sequence of cubatures. Finally, to illustrate the behaviour of the proposed method, we present some numerical examples.
引用
收藏
页码:377 / 394
页数:17
相关论文
共 50 条