Approximation algorithms for constructing spanning K-trees using stock pieces of bounded length

被引:0
作者
Junran Lichen
Jianping Li
Ko-Wei Lih
机构
[1] Yunnan University,Department of Mathematics
[2] Academia Sinica,Institute of Mathematics
来源
Optimization Letters | 2017年 / 11卷
关键词
-tree; Stock pieces of length ; Approximation algorithms; APTAS;
D O I
暂无
中图分类号
学科分类号
摘要
Given a weighted graph G on n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n + 1$$\end{document} vertices, a spanning K-treeTK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_K$$\end{document} of G is defined to be a spanning tree T of G together with K distinct edges of G that are not edges of T. The objective of the minimum-cost spanning K-tree problem is to choose a subset of edges to form a spanning K-tree with the minimum weight. In this paper, we consider the constructing spanning K-tree problem that is a generalization of the minimum-cost spanning K-tree problem. We are required to construct a spanning K-tree TK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_K$$\end{document} whose n+K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+K$$\end{document} edges are assembled from some stock pieces of bounded length L. Let c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document} be the sale price of each stock piece of length L and k(TK)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(T_K)$$\end{document} the number of minimum stock pieces to construct the n+K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+K$$\end{document} edges in TK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_K$$\end{document}. For each edge e in G, let c(e) be the construction cost of that edge e. Our new objective is to minimize the total cost of constructing a spanning K-tree TK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_K$$\end{document}, i.e., minTK{∑e∈TKc(e)+k(TK)·c0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min _{T_K}\{\sum _{e\in T_K} c(e)+ k(T_K)\cdot c_0\}$$\end{document}. The main results obtained in this paper are as follows. (1) A 2-approximation algorithm to solve the constructing spanning K-tree problem. (2) A 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{2}$$\end{document}-approximation algorithm to solve the special case for constant construction cost of edges. (3) An APTAS for this special case.
引用
收藏
页码:1663 / 1675
页数:12
相关论文
共 32 条
[1]  
Christofides N(1981)Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations Math. Programm. 20 255-282
[2]  
Mingozzi A(1959)A note on two problems in connexion with graphs Numerische Mathematik 1 269-271
[3]  
Toth P(1993)An efficient algorithm for the min-sum arborescence problem on complete digraphs ORSA J. Comput. 5 426-434
[4]  
Dijkstra EW(1994)Optimal solution of vehicle routing problems using minimum Oper. Res. 42 626-642
[5]  
Fischetti M(1994)-trees Oper. Res. 42 775-779
[6]  
Toth P(1970)A polynomial algorithm for the degree-constrained minimum Oper. Res. 18 1138-1162
[7]  
Fisher ML(1971)-tree problem Math. Program. 1 6-25
[8]  
Fisher ML(1956)The traveling-salesman problem and minimum spanning trees Proce. Am. Math. Soc. 7 48-50
[9]  
Held M(2016)The traveling-salesman problem and minimum spanning trees. II. Optim. Lett. 10 1337-1345
[10]  
Karp RM(2004)On the shortest spanning subtree of a graph and the traveling salesman problem Eur. J. Oper. Res. 158 56-71