Arithmetic Properties of Generalized Hypergeometric F-Series

被引:0
|
作者
V. G. Chirskii
机构
[1] Moscow State University,Dept. of Mech. and Math.
[2] Moscow State Pedagogical University,undefined
[3] Russian Academy of National Economy and Public Administration under the President of the Russian Federation,undefined
来源
Russian Journal of Mathematical Physics | 2020年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, using a generalization of the Siegel-Shidlovskii method in the theory of transcendental numbers, we prove the infinite algebraic independence of elements, generated by generalized hypergeometric series, of direct products of the fields of Kv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}_v$$\end{document}-completions of an algebraic number fieldK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}$$\end{document} of finite degree over the field of rational numbers with respect to a valuation v of the field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}$$\end{document} extending the p-adic valuation of the field ℚ over all primes p except for finitely many of them.
引用
收藏
页码:175 / 184
页数:9
相关论文
共 50 条