Complexity Results for Some Global Optimization Problems

被引:0
作者
M. Locatelli
机构
[1] Università di Torino,Dip. Informatica
来源
Journal of Optimization Theory and Applications | 2009年 / 140卷
关键词
Global optimization; Complexity; Approximation problems; Separable functions;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the complexity of a class of highly structured global optimization problems, namely the maximization of separable functions, with each one-dimensional component convex and nondecreasing, over polytopes defined by a 0-1 constraint matrix with at most two variables involved in each constraint. In particular, we prove some inapproximability and approximability results.
引用
收藏
页码:93 / 102
页数:9
相关论文
共 24 条
[1]  
Bodlaender H.L.(1990)Computational complexity of norm maximization Combinatorica 10 203-225
[2]  
Gritzmann P.(1996)NP-hardness of linear multiplicative programming and related problems J. Glob. Optim. 9 113-119
[3]  
Klee V.(1991)Quadratic programming with one negative eigenvalue is NP-hard J. Glob. Optim. 1 15-22
[4]  
van Leeuwen J.(1974)Computationally related problems SIAM J. Comput. 3 267-279
[5]  
Matsui T.(1995)The complexity of approximating a nonlinear program Math. Program. 69 429-441
[6]  
Pardalos P.(2002)Solving standard quadratic optimization problems via linear, semidefinite, and copositive programming J. Glob. Optim. 24 163-185
[7]  
Vavasis S.A.(2002)Geometric optimization problems likely not contained in APX Discrete Comput. Geom. 28 201-209
[8]  
Sahni S.(2006)A PTAS for the minimization of polynomials of fixed degree over the simplex Theor. Comput. Sci. 361 210-225
[9]  
Bellare M.(1992)Approximation algorithms for indefinite quadratic programming Math. Program. 57 279-311
[10]  
Rogaway P.(1999)Approximating quadratic programming with bound and quadratic constraints Math. Program. 84 219-226