The Phase Diagram of the Quantum Curie-Weiss Model

被引:0
作者
Lincoln Chayes
Nicholas Crawford
Dmitry Ioffe
Anna Levit
机构
[1] University of California at Los Angeles,Department of Mathematics
[2] University of California at Berkeley,Department of Statistics
[3] The Technion,Department of Industrial Engineering
来源
Journal of Statistical Physics | 2008年 / 133卷
关键词
Quantum spin systems; Phase diagrams; Mean field theory; Large deviations; Random current representation; Ising model; Feynman-Kac transformation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies a generalization of the Curie-Weiss model (the Ising model on a complete graph) to quantum mechanics. Using a natural probabilistic representation of this model, we give a complete picture of the phase diagram of the model in the parameters of inverse temperature and transverse field strength. Further analysis computes the critical exponent for the vanishing of the order parameter in the approach to the critical curve and gives useful stability properties for a variational problem associated with the representation.
引用
收藏
相关论文
共 24 条
[1]  
Aizenman M.(1982)Geometric analysis of Commun. Math. Phys. 86 1-48
[2]  
Aizenman M.(1988) fields and Ising models. I, II J. Statist. Phys. 50 1-40
[3]  
Chayes J.T.(1986)Discontinuity of the magnetization in one-dimensional 1/ J. Statist. Phys. 44 393-454
[4]  
Chayes L.(1994)− Commun. Math. Phys. 164 17-63
[5]  
Newman C.M.(1988) Ising and Potts models Ann. Mat. Pura Appl. 151 161-177
[6]  
Aizenman M.(1991)On the critical behavior of the magnetization in high-dimensional Ising models Commun. Math. Phys. 135 499-515
[7]  
Fernández R.(1980)Geometric aspects of quantum spin states J. Math. Phys. 21 355-360
[8]  
Aizenman M.(1978)Large deviations and stochastic homogenization Commun. Math. Phys. 62 1-34
[9]  
Nachtergaele B.(2003)Localization in the ground state of the Ising model with a random transverse field Commun. Math. Phys. 233 1-12
[10]  
Baldi P.(2007)Equilibrium states for mean field models Mark. Proc. Rel. Fields 13 469-492