Maximal regularity for elliptic operators with second-order discontinuous coefficients

被引:0
作者
G. Metafune
L. Negro
C. Spina
机构
[1] Università del Salento,Dipartimento di Matematica “Ennio De Giorgi”
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Elliptic operators; Discontinuous coefficients; Kernel estimates; Maximal regularity; 47D07; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We prove maximal regularity for parabolic problems associated to the second-order elliptic operator L=Δ+(a-1)∑i,j=1Nxixj|x|2Dij+cx|x|2·∇-b|x|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} L =\Delta +(a-1)\sum _{i,j=1}^N\frac{x_ix_j}{|x|^2}D_{ij}+c\frac{x}{|x|^2}\cdot \nabla -b|x|^{-2} \end{aligned}$$\end{document}with a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} and b,c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\ c$$\end{document} real coefficients.
引用
收藏
页码:3613 / 3637
页数:24
相关论文
共 24 条
[1]  
Auscher P.(2007)Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights Adv. Math. 212 225-276
[2]  
Martell J.M.(2020)Besov and Triebel–Lizorkin spaces for Schrödinger operators with inverse–square potentials and applications J. Differ. Equ. 269 641-688
[3]  
Bui TA(1991)Change of variable results for Trans. Am. Math. Soc. 328 639-666
[4]  
Johnson R(2018)-and reverse Hölder J. Evol. Equ. 18 467-514
[5]  
Neugebauer CJ(2019)-classes Mediterr. J. Math. 16 138-439
[6]  
Metafune G(2016)Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients J.Evol. Equ. 16 391-1331
[7]  
Negro L(2016)Gradient estimates for elliptic operator with second order discontinuous coefficients Ann. Mat. Pura Appl. 195 1305-654
[8]  
Spina C(2019)Scale invariant elliptic operators with singular coefficients Ann. SNS XIX 601-522
[9]  
Metafune G(2017)Rellich and Calderón-Zygmund inequalities for elliptic operators with discontinuous coefficients J. Evol. Eq. 17 485-undefined
[10]  
Negro L(undefined)Elliptic and parabolic problems for a class of operators with discontinuous coefficients undefined undefined undefined-undefined