Bioreactors for engineering patient-specific tissue grafts

被引:21
作者
Sarkar, Naboneeta [1 ,2 ]
Bhumiratana, Sarindr [3 ]
Geris, Liesbet [4 ]
Papantoniou, Ioannis [4 ,5 ]
Grayson, Warren L. [1 ,2 ,6 ,7 ,8 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Translat Tissue Engn Ctr, Baltimore, MD 21218 USA
[3] EpiBone Inc, Brooklyn, NY USA
[4] Katholieke Univ Leuven, Prometheus Div Skeletal Tissue Engn, Leuven, Belgium
[5] Katholieke Univ Leuven, Skeletal Biol & Engn Res Ctr, Dept Dev & Regenerat, Leuven, Belgium
[6] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Inst Nanobiotechnol, Baltimore, MD 21218 USA
来源
NATURE REVIEWS BIOENGINEERING | 2023年 / 1卷 / 05期
关键词
ROTATOR CUFF REPAIR; STEM-CELLS; MECHANICAL-PROPERTIES; BLOOD-VESSELS; NEOTISSUE GROWTH; CLINICAL-TRIAL; CONTRAST AGENT; CYCLIC STRAIN; TENDON REPAIR; PERFUSION;
D O I
10.1038/s44222-023-00036-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bioreactors have the potential to advance the clinical application of cell-based therapies. Cell expansion bioreactors have been used commercially for therapeutic applications; however, bioreactor-based engineering of 3D tissue grafts remains challenging owing to the complexity of tissue architectures, cellular heterogeneity and the lack of non-invasive, tissue-specific biomarkers with which to assess graft viability and maturation. Consequently, only a few bioreactor-based start-up companies that engineer patient-specific tissue grafts have emerged. In this Review, we discuss patient-specific bioreactors that can be used to engineer skin, small-diameter arteries and musculoskeletal tissues. We evaluate the impact of precision manufacturing, including 3D bioprinting, automation and non-invasive sensing, on optimizing the biological, chemical and physical parameters of the bioreactors that are required for specific tissue regeneration. We discuss the commercially available tissue-engineering bioreactors and the potential of digital twins and automation, and we outline the scientific and regulatory pathways that must be followed to enable the translation of tissue-specificbioreactors to the clinic.
引用
收藏
页码:361 / 377
页数:17
相关论文
共 158 条
[41]   Physical Stimulation of Chondrogenic Cells In Vitro: A Review [J].
Grad, Sibylle ;
Eglin, David ;
Alini, Mauro ;
Stoddart, Martin J. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2011, 469 (10) :2764-2772
[42]   A Novel Approach for Non-Invasive Continuous In-Line Control of Perfusion Cell Cultivations by Raman Spectroscopy [J].
Graf, A. ;
Lemke, J. ;
Schulze, M. ;
Soeldner, R. ;
Rebner, K. ;
Hoehse, M. ;
Matuszczyk, J. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
[43]   Engineering anatomically shaped human bone grafts [J].
Grayson, Warren L. ;
Froehlich, Mirjam ;
Yeager, Keith ;
Bhumiratana, Sarindr ;
Chan, M. Ete ;
Cannizzaro, Christopher ;
Wan, Leo Q. ;
Liu, X. Sherry ;
Guo, X. Edward ;
Vunjak-Novakovic, Gordana .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (08) :3299-3304
[44]   Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold [J].
Guyot, Y. ;
Papantoniou, I. ;
Luyten, F. P. ;
Geris, L. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2016, 15 (01) :169-180
[45]   A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor [J].
Guyot, Y. ;
Luyten, F. P. ;
Schrooten, J. ;
Papantoniou, I. ;
Geris, L. .
BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (12) :2591-2600
[46]   A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study [J].
Guyot, Y. ;
Papantoniou, I. ;
Chai, Y. C. ;
Van Bael, S. ;
Schrooten, J. ;
Geris, L. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2014, 13 (06) :1361-1371
[47]  
Hackmann M., 2019, EXPLORING SOURCES VA
[48]   Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing [J].
Hall, Gabriella Nilsson ;
Mendes, Luis Freitas ;
Gklava, Charikleia ;
Geris, Liesbet ;
Luyten, Frank P. ;
Papantoniou, Ioannis .
ADVANCED SCIENCE, 2020, 7 (02)
[49]   Recent Advances in Application of Biosensors in Tissue Engineering [J].
Hasan, Anwarul ;
Nurunnabi, Md ;
Morshed, Mahboob ;
Paul, Arghya ;
Polini, Alessandro ;
Kuila, Tapas ;
Al Hariri, Moustafa ;
Lee, Yong-kyu ;
Jaffa, Ayad A. .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[50]  
He Qingyi, 2002, Chin J Traumatol, V5, P200