Likelihood ratio inference for mean residual life

被引:0
作者
Junshan Shen
Wei Liang
Shuyuan He
机构
[1] Peking University,School of Mathematical Sciences
[2] Capital Normal University,School of Mathematical Sciences
来源
Statistical Papers | 2012年 / 53卷
关键词
Mean residual life; Log-likelihood ratio; Empirical likelihood; EM algorithm; 62G20; 62N01;
D O I
暂无
中图分类号
学科分类号
摘要
One of the basic parameters in survival analysis is the mean residual life M0. For right censored observation, the usual empirical likelihood based log-likelihood ratio leads to a scaled \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi_1^2}$$\end{document} limit distribution and estimating the scaled parameter leads to lower coverage of the corresponding confidence interval. To solve the problem, we present a log-likelihood ratio l(M0) by methods of Murphy and van der Vaart (Ann Stat 1471–1509, 1997). The limit distribution of l(M0) is the standard \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi_1^2}$$\end{document} distribution. Based on the limit distribution of l(M0), the corresponding confidence interval of M0 is constructed. Since the proof of the limit distribution does not offer a computational method for the maximization of the log-likelihood ratio, an EM algorithm is proposed. Simulation studies support the theoretical result.
引用
收藏
页码:401 / 408
页数:7
相关论文
共 50 条
  • [1] Likelihood ratio inference for mean residual life
    Shen, Junshan
    Liang, Wei
    He, Shuyuan
    STATISTICAL PAPERS, 2012, 53 (02) : 401 - 408
  • [2] Likelihood Ratio Inference for Mean Residual Life of Length-biased Random Variable
    Liang, Wei
    Shen, Jun-shan
    He, Shu-yuan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 269 - 282
  • [3] Likelihood Ratio Inference for Mean Residual Life of Length-biased Random Variable
    Wei LIANG
    Jun-shan SHEN
    Shu-yuan HE
    ActaMathematicaeApplicataeSinica, 2016, 32 (02) : 269 - 282
  • [4] Likelihood ratio inference for mean residual life of length-biased random variable
    Wei Liang
    Jun-shan Shen
    Shu-yuan He
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 269 - 282
  • [5] Empirical likelihood inference for the mean residual life under random censorship
    Qin, Gengsheng
    Zhao, Yichuan
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (05) : 549 - 557
  • [6] On inference for mean residual life
    Na, MH
    Kim, JJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (12) : 2917 - 2933
  • [7] Jackknife empirical likelihood ratio test for testing mean residual life and mean past life ordering
    Kattumannil, Sudheesh K.
    Dewan, Isha
    Mathew, Litty
    STATISTICS, 2022, 56 (05) : 1012 - 1028
  • [8] New empirical likelihood inference for the mean residual life with length-biased and right-censored data
    Alemdjrodo, Kangni
    Zhao, Yichuan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 1029 - 1046
  • [9] Conditional quasi-likelihood inference for mean residual life regression with clustered failure time data
    Huang, Rui
    Sun, Liuquan
    Xiang, Liming
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (04) : 1685 - 1706
  • [10] Jackknife empirical likelihood test for mean residual life functions
    Chen, Ying-Ju
    Ning, Wei
    Gupta, Arjun K.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) : 3111 - 3122