On sharp bounds of certain close-to-convex functions

被引:0
作者
Goel, Priyanka [1 ]
Kumar, S. Sivaprasad [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, New Delhi 110042, India
关键词
Inverse coefficients; Close-to-convex functions; Univalent functions; Starlike functions; COEFFICIENT; INVERSES;
D O I
10.1007/s13370-024-01176-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive general formula for the fourth coefficient of the functions belonging to the Carath & eacute;odory class involving the parameters lying in the open unit disk. Further, we obtain sharp upper bounds of initial inverse coefficients for certain close-to-convex functions satisfying any one of the inequalities: Re((1 - z)f ' (z)) >0, Re((1 - z(2))f ' (z)) > 0, Re((1 - z + z(2))f '(z)) > 0 and Re((1-z)(2 )f ' (z)) > 0.
引用
收藏
页数:24
相关论文
共 16 条
[1]  
Ali R. M., 2003, B MALAYS MATH SCI SO, V26, P63
[2]   SHARP BOUNDS OF SOME COEFFICIENT FUNCTIONALS OVER THE CLASS OF FUNCTIONS CONVEX IN THE DIRECTION OF THE IMAGINARY AXIS [J].
Cho, Nak Fun ;
Kowalczyk, Bogumila ;
Lecko, Adam .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (01) :86-96
[3]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727
[4]  
Grenander U., 1958, TOEPLITZ FORMS THEIR, DOI [10.1525/9780520355408, DOI 10.1525/9780520355408]
[5]  
Jenkins J.A., 1987, COMPLEX VAR THEORY A, V9, P221
[6]  
Kaplan W., 1952, Michigan Math. J., V1, P169, DOI [10.1307/mmj/1028988895, DOI 10.1307/MMJ/1028988895]
[7]   Coefficient estimates for inverses of starlike functions of positive order [J].
Kapoor, G. P. ;
Mishra, A. K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) :922-934
[8]   Logarithmic coefficients for certain subclasses of close-to-convex functions [J].
Kumar, U. Pranav ;
Vasudevarao, A. .
MONATSHEFTE FUR MATHEMATIK, 2018, 187 (03) :543-563
[9]   On the Fourth Coefficient of Functions in the Caratheodory Class [J].
Kwon, Oh Sang ;
Lecko, Adam ;
Sim, Young Jae .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (02) :307-314
[10]   COEFFICIENT BOUNDS FOR THE INVERSE OF A FUNCTION WITH DERIVATIVE IN RHO .2. [J].
LIBERA, RJ ;
ZLOTKIEWICZ, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (01) :58-60