Controlling the Cassie-to-Wenzel Transition: an Easy Route towards the Realization of Tridimensional Arrays of Biological Objects

被引:15
作者
Ciasca, G. [1 ]
Papi, M. [1 ]
Chiarpotto, M. [1 ]
De Ninno, A. [2 ]
Giovine, E. [2 ]
Campi, G. [3 ]
Gerardino, A. [2 ]
De Spirito, M. [1 ]
Businaro, L. [2 ]
机构
[1] Univ Cattolica Sacro Cuore, Inst Fis, I-00168 Rome, Italy
[2] CNR, Ist Fot & Nanotecnol, I-00156 Rome, Italy
[3] CNR, Inst Crystallog, I-0016 Rome, Italy
关键词
Superhydrophobic patterned surfaces; Cassie-to-Wenzel transition; DNA arrays; SUPERHYDROPHOBIC PATTERNED SURFACES; NANOPATTERNED POLYMERS; FRICTION PROPERTIES; AGGREGATION; TOPOLOGY; DROPLETS; ADHESION;
D O I
10.5101/nml140030a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper we provide evidence that the Cassie-to-Wenzel transition, despite its detrimental effects on the wetting properties of superhydrophobic surfaces, can be exploited as an effective micro-fabrication strategy to obtain highly ordered arrays of biological objects. To this purpose we fabricated a patterned surface wetted in the Cassie state, where we deposited a droplet containing genomic DNA. We observed that, when the droplet wets the surface in the Cassie state, an array of DNA filaments pinned on the top edges between pillars is formed. Conversely, when the Cassie-to-Wenzel transition occurs, DNA can be pinned at different height between pillars. These results open the way to the realization of tridimensional arrays of biological objects.
引用
收藏
页码:280 / 286
页数:7
相关论文
共 38 条
[1]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[2]   Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].
Bhushan, Bharat ;
Jung, Yong Chae .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) :1-108
[3]   Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems [J].
Burton, Z ;
Bhushan, B .
NANO LETTERS, 2005, 5 (08) :1607-1613
[4]   Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements [J].
Campi, G. ;
Pezzotti, G. ;
Fratini, M. ;
Ricci, A. ;
Burghammer, M. ;
Cancedda, R. ;
Mastrogiacomo, M. ;
Bukreeva, I. ;
Cedola, A. .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[5]   Early stage mineralization in tissue engineering mapped by high resolution X-ray microdiffraction [J].
Campi, G. ;
Ricci, A. ;
Guagliardi, A. ;
Giannini, C. ;
Lagomarsino, S. ;
Cancedda, R. ;
Mastrogiacomo, M. ;
Cedola, A. .
ACTA BIOMATERIALIA, 2012, 8 (09) :3411-3418
[6]   Topology optimization of robust superhydrophobic surfaces [J].
Cavalli, Andrea ;
Boggild, Peter ;
Okkels, Fridolin .
SOFT MATTER, 2013, 9 (07) :2234-2238
[7]   Long range electronic transport in DNA molecules deposited across a disconnected array of metallic nanoparticles [J].
Chepelianskii, Alexei D. ;
Klinov, D. ;
Kasumov, A. ;
Gueron, S. ;
Pietrement, O. ;
Lyonnais, S. ;
Bouchiat, H. .
COMPTES RENDUS PHYSIQUE, 2012, 13 (9-10) :967-992
[8]   Mechanism of aluminium bio-mineralization in the apoferritin cavity [J].
Chiarpotto, M. ;
Ciasca, G. ;
Vassalli, M. ;
Rossi, C. ;
Campi, G. ;
Ricci, A. ;
Bocca, B. ;
Pino, A. ;
Alimonti, A. ;
De Sole, P. ;
Papi, M. .
APPLIED PHYSICS LETTERS, 2013, 103 (08)
[9]   Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces [J].
Ciasca, G. ;
Businaro, L. ;
Papi, M. ;
Notargiacomo, A. ;
Chiarpotto, M. ;
De Ninno, A. ;
Palmieri, V. ;
Carta, S. ;
Giovine, E. ;
Gerardino, A. ;
De Spirito, M. .
NANOTECHNOLOGY, 2013, 24 (49)
[10]   Wet sample confinement by superhydrophobic patterned surfaces for combined X-ray fluorescence and X-ray phase contrast imaging [J].
Ciasca, G. ;
Businaro, L. ;
De Ninno, A. ;
Cedola, A. ;
Notargiacomo, A. ;
Campi, G. ;
Papi, M. ;
Ranieri, A. ;
Carta, S. ;
Giovine, E. ;
Gerardino, A. .
MICROELECTRONIC ENGINEERING, 2013, 111 :304-309