Boundary Estimate for the Gradient of a Solution to the Dirichlet Problem for (p,q)-Nonlinear Equations

被引:0
作者
I. V. Nezhinskaya
机构
关键词
Nonlinear Equation; Elliptic Equation; Dirichlet Problem; Nonlinear Elliptic Equation; Boundary Estimate;
D O I
10.1023/B:JOTH.0000014843.14646.2b
中图分类号
学科分类号
摘要
(p, q)-Nonlinear elliptic equations are considered, where p, q, p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ < $$ \end{document} q, characterize the growth with respect to the gradient of eigenvalues of the principle matrix. Under the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2 \leqslant p < q, q - p < \frac{2}{{n^2 + n}}p$$ \end{document} an a priori estimate for the maximum of the modulus of the gradient of a solution to the Dirichlet problem is obtained. Bibliography: 8 titles.
引用
收藏
页码:1145 / 1154
页数:9
相关论文
共 4 条
[1]  
Serrin J.(1969)The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables Philos. Trans. R. Soc. London, Ser. A 264 413-496
[2]  
Ivanov A. V.(1971)On the Dirichlet problem for quasilinear nonuniformly elliptic equations of the second order Tr. MIAN 116 34-54
[3]  
Ivanov A. V.(1968)Local estimates for the maximum of modulus of the first order derivatives for solutions to quasilinear nonuniformly elliptic equations of divergence form Zap. Nauchn. Semin. LOMI 7 87-125
[4]  
Marcellini P.(1991)Regularity and existence of solutions of elliptic equations with J. Differ. Equations 90 1-30