Asymptotic expansions for the conditional sojourn time distribution in the M/M/1-PS queue

被引:0
作者
Qiang Zhen
Charles Knessl
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics, and Computer Science
来源
Queueing Systems | 2007年 / 57卷
关键词
Processor sharing; Asymptotics; Sojourn time; /; /1 queue; 41A60; 60K25; 90B22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the M/M/1 queue with processor sharing. We study the conditional sojourn time distribution, conditioned on the customer’s service requirement, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. The asymptotic formulas relate to, and extend, some results of Morrison (SIAM J. Appl. Math. 45:152–167, [1985]) and Flatto (Ann. Appl. Probab. 7:382–409, [1997]).
引用
收藏
页码:157 / 168
页数:11
相关论文
共 30 条
[1]  
Kleinrock L.(1964)Analysis of a time-shared processor Nav. Res. Logist. Q. 11 59-73
[2]  
Kleinrock L.(1967)Time-shared systems: a theoretical treatment J. ACM 14 242-261
[3]  
Coffman E.G.(1970)Waiting time distributions for processor-sharing systems J. ACM 17 123-130
[4]  
Muntz R.R.(1985)Response-time distribution for a processor-sharing system SIAM J. Appl. Math. 45 152-167
[5]  
Trotter H.(1946)Délais d’attente des appels téléphoniques traités au hasard C.R. Acad. Sci. Paris 222 268-269
[6]  
Morrison J.A.(1953)Delay curves for calls served at random Bell Syst. Tech. J. 32 100-119
[7]  
Vaulot E.(1962)On queues in which customers are served in random order Proc. Camb. Philos. Soc. 58 79-91
[8]  
Riordan J.(1997)The waiting time distribution for the random order service Ann. Appl. Probab. 7 382-409
[9]  
Kingman J.F.C.(1946)/ C.R. Acad. Sci. Paris 222 353-355
[10]  
Flatto L.(1984)/1 queue J. Appl. Probab. 21 937-937