On the Real Roots of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-Polynomials

被引:0
作者
Jason I. Brown
Aysel Erey
机构
[1] Dalhousie University,Department of Mathematics and Statistics
关键词
Chromatic polynomial; -polynomial; -root; Closure; Zero-free interval; 05C69; 05E15;
D O I
10.1007/s00373-016-1684-0
中图分类号
学科分类号
摘要
The σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-polynomial is given by σ(G,x)=∑i=χ(G)nai(G)xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (G,x) = \sum _{i=\chi (G)}^{n} a_{i}(G)\, x^{i}$$\end{document}, where ai(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}(G)$$\end{document} is the number of partitions of the vertices of G into i nonempty independent sets. These polynomials are closely related to chromatic polynomials, as the chromatic polynomial of G is given by ∑i=χ(G)nai(G)x(x-1)…(x-(i-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=\chi (G)}^{n} a_{i}(G)\, x(x-1) \ldots (x-(i-1))$$\end{document}. It is known that the closure of the real roots of chromatic polynomials is precisely {0,1}⋃[32/27,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,~1\} \bigcup [32/27,\infty )$$\end{document}, with (-∞,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\infty ,0)$$\end{document}, (0, 1) and (1, 32 / 27) being maximal zero-free intervals for roots of chromatic polynomials. We ask here whether such maximal zero-free intervals exist for σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-polynomials, and show that the only such interval is [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}—that is, the closure of the real roots of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-polynomials is (-∞,0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\infty ,0]$$\end{document}.
引用
收藏
页码:1723 / 1730
页数:7
相关论文
共 18 条
[1]  
Brenti F(1992)Expansions of chromatic polynomials and log-concavity Trans. Am. Math. Soc. 332 729-756
[2]  
Brenti F(1994)Location of zeroes of chromatic and related polynomials of graphs Canad. J. Math. 46 55-80
[3]  
Royle GF(2001)Weak asymptotics for the generating polynomials of the Stirling numbers of the second kind J. Approx. Theory 109 218-228
[4]  
Wagner DG(2013)Stirling numbers of forests and cycles Electron. J. Combin. 20 P73-414
[5]  
Elbert C(1967)Stirling behavior is asymptotically normal Ann. Math. Stat. 38 410-445
[6]  
Galvin D(1998)Balanced integral trees Math. Slovaca 48 429-336
[7]  
Thanh DT(1993)A zero-free interval for chromatic polynomials of graphs Combin. Probab. Comput. 2 325-153
[8]  
Harper LH(1978)-polynomials and graph coloring J. Combin. Theory Ser. B 24 137-206
[9]  
Híc P(1968)Concavity properties and a generating function for stirling numbers J. Combin. Theory 5 203-19
[10]  
Nedela R(2014)On the location of roots of graph polynomials Eur. J. Combin. 41 1-261