Approximate MLE for the scaled generalized exponential distribution under progressive type-II censoring

被引:0
作者
A. Asgharzadeh
机构
[1] University of Mazandaran,Department of Statistics, Faculty of Basic Science
[2] Statistical Research Center,undefined
来源
Journal of the Korean Statistical Society | 2009年 / 38卷
关键词
Bias; Confidence interval; Fisher information; Generalized exponential distribution; Maximum likelihood estimator; Monte Carlo simulation; Pivotal quantity; Progressive Type-II censoring; 62N02; 62E15;
D O I
暂无
中图分类号
学科分类号
摘要
For the generalized exponential (GE) distribution, the maximum likelihood method does not provide an explicit estimator for the scale parameter based on a progressively Type-II censored sample. This paper provides a simple method of deriving an explicit estimator by approximating the likelihood function. A Monte Carlo simulation is used to investigate the accuracy of this estimator and two examples are given to illustrate this method of estimation.
引用
收藏
页码:223 / 229
页数:6
相关论文
共 26 条
[1]  
Asgharzadeh A(2006)Point and interval estimation for a generalized logistic distribution under progressive Type II censoring Communications in Statistics-Theory and Methods 35 1685-1702
[2]  
Balakrishnan N(2005)Inference for the scaled half-logistic distribution based on progressively Type II censored samples Communications in Statistics-Theory and Methods 34 73-87
[3]  
Asgharzadeh A(2003)Point and interval estimation for the normal distribution based on progressively Type-II censored samples IEEE Transactions on Reliability 52 90-95
[4]  
Balakrishnan N(2004)Inference for the extreme value distribution under progressive Type-II censoring Journal of Statistical Computation and Simulation 74 25-45
[5]  
Kannan N(1995)A simple simulational algorithm for generating progressive Type-II censored samples The American Statistician 49 229-230
[6]  
Lin C T(1999)Generalized exponential distribution Australian & New Zealand Journal of Statistics 41 173-188
[7]  
Ng H K T(2002)Generalized exponential distribution: Statistical inferences Journal of Statistical Theory and Applications 1 101-118
[8]  
Balakrishnan N(2007)Generalized exponential distribution: Existing results and some recent developments Journal of Statistical Planning and Inferences 137 3537-3547
[9]  
Kannan N(2004)Empirical inference for generalized exponential distribution based on records Communications in Statistics-Theory and Methods 33 1851-1861
[10]  
Lin C T(1971)Best linear invariant estimator for Weibull parameters under progressive censoring Technometrics 13 521-533