A Malmquist–Steinmetz Theorem for Difference Equations

被引:0
作者
Yueyang Zhang
Risto Korhonen
机构
[1] University of Science and Technology Beijing,School of Mathematics and Physics
[2] University of Eastern Finland,Department of Physics and Mathematics
来源
Constructive Approximation | 2024年 / 59卷
关键词
Difference equation; Meromorphic solution; Malmquist’s theorem; Nevanlinna theory; Primary 39A10; Secondary 30D35; 39A12;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that if the equation f(z+1)n=R(z,f),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(z+1)^n=R(z,f), \end{aligned}$$\end{document}where R(z, f) is rational in both arguments and degf(R(z,f))≠n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _f(R(z,f))\not =n$$\end{document}, has a transcendental meromorphic solution, then the equation above reduces into one out of several types of difference equations where the rational term R(z, f) takes particular forms. Solutions of these equations are presented in terms of Weierstrass or Jacobian elliptic functions, exponential type functions or functions which are solutions to a certain autonomous first-order difference equation having meromorphic solutions with preassigned asymptotic behavior. These results complement our previous work on the case degf(R(z,f))=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _f(R(z,f))=n$$\end{document} of the equation above and thus provide a complete difference analogue of Steinmetz’ generalization of Malmquist’s theorem.
引用
收藏
页码:619 / 673
页数:54
相关论文
共 37 条
[1]  
Ablowitz MJ(2000)On the extension of the Painlevé property to difference equations Nonlinearity 13 889-905
[2]  
Halburd R(1966)On a class of meromorphic functions Proc. Am. Math. Soc. 17 819-822
[3]  
Herbst B(1980)On the growth of meromorphic solutions of the differential equation Acta Math. 144 223-248
[4]  
Baker IN(1966)Erratum: On the equation Bull. Am. Math. Soc. 72 576-88
[5]  
Bank SB(1966)On the equation Bull. Am. Math. Soc. 72 86-474
[6]  
Kaufman RP(2007)Finite-order meromorphic solutions and the discrete Painlevé equations Proc. Lond. Math. Soc. (3) 94 443-4298
[7]  
Gross F(2014)Holomorphic curves with shift-invariant hyperplane preimages Trans. Am. Math. Soc. 366 4267-491
[8]  
Gross F(1993)Algebroid solutions of binomial and linear differential equations Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 90 48-504
[9]  
Halburd RG(2020)A lemma on the difference quotients Ann. Acad. Sci. Fenn. Ser. Math. 45 479-343
[10]  
Korhonen RJ(2020)Existence of meromorphic solutions of first-order difference equations Constr. Approx. 51 465-87