Gradient estimates for the Fisher–KPP equation on Riemannian manifolds

被引:0
作者
Xin Geng
Songbo Hou
机构
[1] China Agricultural University,Department of Applied Mathematics, College of Science
来源
Boundary Value Problems | / 2018卷
关键词
Fisher–KPP equation; Gradient estimate; Harnack inequality; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider positive solutions to the Fisher–KPP equation on complete Riemannian manifolds. We derive the gradient estimate. Using the estimate, we get the classic Harnack inequality which extends the recent result of Cao, Liu, Pendleton, and Ward (Pac. J. Math. 290(2):273–300, 2017).
引用
收藏
相关论文
共 50 条
[21]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[22]   Gradient Estimates for the Porous Medium Equations on Riemannian Manifolds [J].
Guangyue Huang ;
Zhijie Huang ;
Haizhong Li .
Journal of Geometric Analysis, 2013, 23 :1851-1875
[23]   Gradient Estimates for the Porous Medium Equations on Riemannian Manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) :1851-1875
[24]   Gradient Estimates for Generalized Harmonic Functions on Riemannian Manifolds [J].
王凤雨 .
ChineseScienceBulletin, 1994, (22) :1849-1852
[25]   LIOUVILLE THEOREM AND GRADIENT ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS [J].
Wang, Wen ;
Zhou, Hui ;
Zhang, Xinquan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
[26]   Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds [J].
Arnaudon, Marc ;
Thalmaier, Anton ;
Wang, Feng-Yu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3653-3670
[27]   GRADIENT ESTIMATE FOR A NONLINEAR HEAT EQUATION ON RIEMANNIAN MANIFOLDS [J].
Jiang, Xinrong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) :3635-3642
[28]   Gradient estimates for positive weak solution to Δpu + auσ=0 on Riemannian manifolds [J].
Huang, Guangyue ;
Guo, Qi ;
Guo, Lujun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (02)
[29]   Local Hamilton Type Gradient Estimates for Nonlinear Parabolic Equations on Riemannian Manifolds [J].
Li, Xiaosheng ;
Duan, Canfang ;
Jin, Cheng ;
Zeng, Fanqi .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
[30]   Some gradient estimates and Harnack inequalities for nonlinear parabolic equations on Riemannian manifolds [J].
Wang, Wen ;
Zhang, Pan .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (11-12) :1905-1917