Accelerating Algebraic Multigrid Methods via Artificial Neural Networks

被引:0
作者
Paola F. Antonietti
Matteo Caldana
Luca Dede’
机构
[1] MOX,
[2] Dipartimento di Matematica,undefined
[3] Politecnico di Milano,undefined
来源
Vietnam Journal of Mathematics | 2023年 / 51卷
关键词
Algebraic multigrid (AMG); Deep learning; Convolutional neural networks; Finite element method; Elliptic PDEs; Stokes problem; 65N55; 65N30; 65N22; 68T01;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel deep learning-based algorithm to accelerate—through the use of Artificial Neural Networks (ANNs)—the convergence of Algebraic Multigrid (AMG) methods for the iterative solution of the linear systems of equations stemming from finite element discretizations of Partial Differential Equations (PDE). We show that ANNs can be successfully used to predict the strong connection parameter that enters in the construction of the sequence of increasingly smaller matrix problems standing at the basis of the AMG algorithm, so as to maximize the corresponding convergence factor of the AMG scheme. To demonstrate the practical capabilities of the proposed algorithm, which we call AMG-ANN, we consider the iterative solution of the algebraic system of equations stemming from finite element discretizations of two-dimensional model problems. First, we consider an elliptic equation with a highly heterogeneous diffusion coefficient and then a stationary Stokes problem. We train (off-line) our ANN with a rich dataset and present an in-depth analysis of the effects of tuning the strong threshold parameter on the convergence factor of the resulting AMG iterative scheme.
引用
收藏
页码:1 / 36
页数:35
相关论文
共 143 条
[1]  
Antonietti PF(2022)Refinement of polygonal grids using convolutional neural networks with applications to polygonal discontinuous Galerkin and virtual element methods J. Comput. Phys. 452 110900-A1173
[2]  
Manuzzi E(2020)Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods SIAM J. Sci. Comput. 42 A1147-213
[3]  
Antonietti PF(2019)The deal.II library, version 9.1 J. Numer. Math. 27 203-159
[4]  
Melas L(1996)A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations Nuclear Sci. Eng. 124 145-517
[5]  
Arndt D(2010)Improving algebraic multigrid interpolation operators for linear elasticity problems Numer. Linear Algebra Appl. 17 495-S136
[6]  
Bangerth W(2015)Algebraic multigrid domain and range decomposition (AMG-DD/AMG-RD) SIAM J. Sci. Comput. 37 S113-388
[7]  
Clevenger TC(2012)Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems Numer. Linear Algebra Appl. 19 367-148
[8]  
Davydov D(2006)An energy-based AMG coarsening strategy Numer. Linear Algebra Appl. 13 133-1592
[9]  
Fehling M(2001)Algebraic multigrid based on element interpolation (AMGe) SIAM J. Sci. Comput. 22 1570-28
[10]  
Garcia-Sanchez D(2018)Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions Adv. Water Resour. 114 19-1908