A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters

被引:0
作者
Zhaohui Gu
Bicheng Yang
机构
[1] Guangdong University of Foreign Studies,School of Economics and Trade
[2] Guangdong University of Education,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Hilbert-type integral inequality; weight function; equivalent form; beta function; reverse; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
By using the way of real analysis and estimating the weight functions, we build a new Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. The constant factor related to the beta function is proved to be the best possible. We also consider the equivalent forms, the reverses, and some particular cases.
引用
收藏
相关论文
共 31 条
  • [1] Yang B(2009)A survey of the study of Hilbert-type inequalities with parameters Adv. Math. 38 257-268
  • [2] Yang B(2006)On the norm of an integral operator and applications J. Math. Anal. Appl. 321 182-192
  • [3] Xu J(2007)Hardy-Hilbert’s inequalities with two parameters Adv. Math. 36 63-76
  • [4] Yang B(2007)On the norm of a Hilbert’s type linear operator and applications J. Math. Anal. Appl. 325 529-541
  • [5] Xin D(2010)A Hilbert-type integral inequality with the homogeneous kernel of zero degree Math. Theory Appl. 30 70-74
  • [6] Yang B(2010)A Hilbert-type integral inequality with the homogeneous kernel of degree 0 J. Shandong Univ. Nat. Sci. 45 103-106
  • [7] Debnath L(2012)Recent developments of Hilbert-type discrete and integral inequalities with applications Int. J. Math. Math. Sci. 2012 849-859
  • [8] Yang B(2007)A new Hilbert-type integral inequality Soochow J. Math. 33 105-211
  • [9] Yang B(2010)On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometric function Math. Pract. Theory 40 1085-1090
  • [10] He B(2008)A new Hilbert-type integral inequality with some parameters J. Jilin Univ. Sci. Ed. 46 165-169