共 2 条
Nonproper intersection products and generalized cycles
被引:0
|作者:
Mats Andersson
Dennis Eriksson
Håkan Samuelsson Kalm
Elizabeth Wulcan
Alain Yger
机构:
[1] Chalmers University of Technology and University of Gothenburg,Department of Mathematical Sciences
[2] IMB,undefined
[3] Université de Bordeaux,undefined
来源:
European Journal of Mathematics
|
2021年
/
7卷
关键词:
Analytic cycles;
Currents;
Nonproper intersections;
Stückrad–Vogel procedure;
Monge–Ampère type product;
14C17;
32C30;
32A27;
32C15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We develop intersection theory in terms of the B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {B}}}$$\end{document}-group of a reduced analytic space. This group was introduced in a previous work as an analogue of the Chow group; it is generated by currents that are direct images of Chern forms and it contains all usual cycles. However, contrary to Chow classes, the B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {B}}}$$\end{document}-classes have well-defined multiplicities at each point. We focus on a B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {B}}}$$\end{document}-analogue of the intersection theory based on the Stückrad–Vogel procedure and the join construction in projective space. Our approach provides global B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {B}}}$$\end{document}-classes which satisfy a Bézout theorem and have the expected local intersection numbers. We also introduce B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {B}}}$$\end{document}-analogues of more classical constructions of intersections using the Gysin map of the diagonal. These constructions are connected via a B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathscr {B}}}$$\end{document}-variant of van Gastel’s formulas. Furthermore, we prove that our intersections coincide with the classical ones on cohomology level.
引用
收藏
页码:1337 / 1381
页数:44
相关论文