Nonproper intersection products and generalized cycles

被引:0
|
作者
Mats Andersson
Dennis Eriksson
Håkan Samuelsson Kalm
Elizabeth Wulcan
Alain Yger
机构
[1] Chalmers University of Technology and University of Gothenburg,Department of Mathematical Sciences
[2] IMB,undefined
[3] Université de Bordeaux,undefined
来源
European Journal of Mathematics | 2021年 / 7卷
关键词
Analytic cycles; Currents; Nonproper intersections; Stückrad–Vogel procedure; Monge–Ampère type product; 14C17; 32C30; 32A27; 32C15;
D O I
暂无
中图分类号
学科分类号
摘要
We develop intersection theory in terms of the B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {B}}}$$\end{document}-group of a reduced analytic space. This group was introduced in a previous work as an analogue of the Chow group; it is generated by currents that are direct images of Chern forms and it contains all usual cycles. However, contrary to Chow classes, the B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {B}}}$$\end{document}-classes have well-defined multiplicities at each point. We focus on a B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {B}}}$$\end{document}-analogue of the intersection theory based on the Stückrad–Vogel procedure and the join construction in projective space. Our approach provides global B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {B}}}$$\end{document}-classes which satisfy a Bézout theorem and have the expected local intersection numbers. We also introduce B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {B}}}$$\end{document}-analogues of more classical constructions of intersections using the Gysin map of the diagonal. These constructions are connected via a B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {B}}}$$\end{document}-variant of van Gastel’s formulas. Furthermore, we prove that our intersections coincide with the classical ones on cohomology level.
引用
收藏
页码:1337 / 1381
页数:44
相关论文
共 2 条
  • [1] Nonproper intersection products and generalized cycles
    Andersson, Mats
    Eriksson, Dennis
    Kalm, Hakan Samuelsson
    Wulcan, Elizabeth
    Yger, Alain
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1337 - 1381
  • [2] Self-intersection of foliation cycles on complex manifolds
    Kaufmann, Lucas
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (08)