Two-dimensional polymer networks at a mixed boundary: Surface and wedge exponents

被引:0
|
作者
M.T. Batchelor
D. Bennett-Wood
A.L. Owczarek
机构
[1] Department of Mathematics,
[2] School of Mathematical Sciences,undefined
[3] Australian National University,undefined
[4] Canberra ACT 0200,undefined
[5] Australia,undefined
[6] Department of Mathematics and Statistics,undefined
[7] University of Melbourne,undefined
[8] Parkville,undefined
[9] Victoria 3052,undefined
[10] Australia,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 1998年 / 5卷
关键词
PACS. 05.70.Jk Critical point phenomena - 64.60.Cn Statistical mechanics of model systems - 61.41.+e Polymers, elastomers, and plastics;
D O I
暂无
中图分类号
学科分类号
摘要
We provide general formulae for the configurational exponents of an arbitrary polymer network connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to assume a general mixture of boundary conditions on either side of the wedge. We report on a comprehensive study of a linear chain by exact enumeration, with various attachments of the walk's ends to the surface, in wedges of angles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, with general mixed boundary conditions.
引用
收藏
页码:139 / 142
页数:3
相关论文
共 50 条
  • [11] Dirac Cones in two-dimensional conjugated polymer networks
    Jean-Joseph Adjizian
    Patrick Briddon
    Bernard Humbert
    Jean-Luc Duvail
    Philipp Wagner
    Coline Adda
    Christopher Ewels
    Nature Communications, 5
  • [12] Numerical modeling of the freefall of two-dimensional wedge bodies into water surface
    Mohammad Izadi
    Parviz Ghadimi
    Manouchehr Fadavi
    Sasan Tavakoli
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [13] Numerical modeling of the freefall of two-dimensional wedge bodies into water surface
    Izadi, Mohammad
    Ghadimi, Parviz
    Fadavi, Manouchehr
    Tavakoli, Sasan
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (01) : 1 - 19
  • [14] Two-dimensional models of boundary and mixed friction at a line contact
    Polycarpou, Andreas A.
    Soom, Andres
    American Society of Mechanical Engineers (Paper), 1994, : 1 - 7
  • [15] Two-dimensional models of boundary and mixed friction at a line contact
    Polycarpou, Andreas A.
    Soom, Andres
    1600, ASME, New York, NY, United States (117):
  • [16] A two-dimensional mixed boundary-value problem by boundary element method
    Kadioglu, Necla
    Ataoglu, Senol
    PROCEEDINGS OF THE 3RD WSEAS INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL MECHANICS (MECHANICS '07): TOPICS IN ADVANCED THEORETICAL AND APPLIED MECHANICS, 2007, : 7 - +
  • [17] Harmonic measure exponents for two-dimensional percolation
    Duplantier, B
    PHYSICAL REVIEW LETTERS, 1999, 82 (20) : 3940 - 3943
  • [18] Universal window for two-dimensional critical exponents
    Taroni, A.
    Bramwell, S. T.
    Holdsworth, P. C. W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (27)
  • [19] Corner Exponents in the Two-Dimensional Potts Model
    Karevski, D.
    Lajko, P.
    Turban, L.
    Journal of Statistical Physics, 86 (5-6):
  • [20] CRITICAL EXPONENTS FOR TWO-DIMENSIONAL BOND PERCOLATION
    LOBB, CJ
    KARASEK, KR
    PHYSICAL REVIEW B, 1982, 25 (01): : 492 - 495