Two-dimensional polymer networks at a mixed boundary: Surface and wedge exponents

被引:0
|
作者
M.T. Batchelor
D. Bennett-Wood
A.L. Owczarek
机构
[1] Department of Mathematics,
[2] School of Mathematical Sciences,undefined
[3] Australian National University,undefined
[4] Canberra ACT 0200,undefined
[5] Australia,undefined
[6] Department of Mathematics and Statistics,undefined
[7] University of Melbourne,undefined
[8] Parkville,undefined
[9] Victoria 3052,undefined
[10] Australia,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 1998年 / 5卷
关键词
PACS. 05.70.Jk Critical point phenomena - 64.60.Cn Statistical mechanics of model systems - 61.41.+e Polymers, elastomers, and plastics;
D O I
暂无
中图分类号
学科分类号
摘要
We provide general formulae for the configurational exponents of an arbitrary polymer network connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to assume a general mixture of boundary conditions on either side of the wedge. We report on a comprehensive study of a linear chain by exact enumeration, with various attachments of the walk's ends to the surface, in wedges of angles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, with general mixed boundary conditions.
引用
收藏
页码:139 / 142
页数:3
相关论文
共 50 条
  • [1] Two-dimensional polymer networks at a mixed boundary: Surface and wedge exponents
    Batchelor, MT
    Bennett-Wood, D
    Owczarek, AL
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (01): : 139 - 142
  • [2] Two-dimensional diffraction by a wedge with impedance boundary conditions
    Budaev, BV
    Bogy, DB
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (06) : 2073 - 2080
  • [3] Two-dimensional polymer networks near percolation
    Wu, Yong
    Schmittmann, B.
    Zia, R. K. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)
  • [4] Surface rheology of two-dimensional percolating networks: Langmuir films of polymer pancakes
    Monroy, F
    Ortega, F
    Rubio, RG
    Ritacco, H
    Langevin, D
    PHYSICAL REVIEW LETTERS, 2005, 95 (05)
  • [5] A TWO-DIMENSIONAL WEDGE DESIGN
    NIZIN, PS
    SINGH, S
    PODMORE, PR
    SVENSSON, GK
    MEDICAL PHYSICS, 1985, 12 (04) : 538 - 538
  • [6] TWO-DIMENSIONAL HYBRIDS WITH MIXED BOUNDARY VALUE PROBLEMS
    Szajewska, Marzena
    Tereszkiewicz, Agnieszka
    ACTA POLYTECHNICA, 2016, 56 (03) : 245 - 253
  • [7] Two-Dimensional Polymer as a Mask for Surface Nanopatterning
    Clair, Sylvain
    Ourdjini, Oualid
    Abel, Mathieu
    Porte, Louis
    ADVANCED MATERIALS, 2012, 24 (09) : 1252 - 1254
  • [8] Critical exponents for two-dimensional percolation
    Smirnov, S
    Werner, W
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (5-6) : 729 - 744
  • [9] Dirac Cones in two-dimensional conjugated polymer networks
    Adjizian, Jean-Joseph
    Briddon, Patrick
    Humbert, Bernard
    Duvail, Jean-Luc
    Wagner, Philipp
    Adda, Coline
    Ewels, Christopher
    NATURE COMMUNICATIONS, 2014, 5
  • [10] Two-Dimensional Polymer Networks Locking on Inorganic Nanoparticles
    Tao, Xingfu
    Li, Yang
    Yu, Linxiuzi
    Zhang, Yinshu
    Han, Chenglong
    Yang, Yang
    Qian, Hujun
    Lu, Zhongyuan
    Liu, Kun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (08)