Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {Z}$\end{document}-Armendariz Rings and Modules

被引:0
|
作者
Afsaneh Nejadzadeh
Afshin Amini
Babak Amini
Habib Sharif
机构
[1] Shiraz University,Department of Mathematics, College of Sciences
关键词
Right singular ideal; Armendariz ring; Right ; -Armendariz ring; -Armendariz module; 16S36; 16U99;
D O I
10.1007/s10013-019-00380-4
中图分类号
学科分类号
摘要
In this paper we introduce and study right Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {Z}$\end{document}-Armendariz rings. A ring R is said to be right Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {Z}$\end{document}-Armendariz if f(x)g(x) = 0 implies that ab is a right singular element of R, where f(x) and g(x) belong to R[x] and a, b are arbitrary coefficients of f(x), g(x). Then we construct some examples of right Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {Z}$\end{document}-Armendariz rings by a given one. Finally, we extend this notion for modules.
引用
收藏
页码:131 / 143
页数:12
相关论文
共 3 条