Many-valued equalities, singletons and fuzzy partitions

被引:36
|
作者
U. Höhle
机构
[1] Fachbereich Mathematik,
[2] Bergische Universität,undefined
[3] D-42097 Wuppertal,undefined
[4] Germany,undefined
关键词
Control Theory; Fuzzy Control; Fuzzy Partition; Fuzzy Control Theory;
D O I
10.1007/s005000050045
中图分类号
学科分类号
摘要
 This paper deals with interrelations between many-valued equalities, singletons and many-valued partitions. Applications to the principle of sliding transition and to fuzzy control theory are given.
引用
收藏
页码:134 / 140
页数:6
相关论文
共 50 条
  • [41] COMPLETENESS OF MANY-VALUED PROTOTHETIC
    SCHARLE, TW
    JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (02) : 363 - &
  • [42] Many-valued points and equality
    Drossos, C
    Mundici, D
    SYNTHESE, 2000, 125 (1-2) : 97 - 101
  • [43] Many-Valued Logic '12
    Ferraioli, Anna Rita
    Gerla, Brunella
    Russo, Ciro
    Spada, Luca
    MATHEMATICA SLOVACA, 2015, 65 (04) : 723 - 724
  • [44] Many-valued relation algebras
    Popescu, A
    ALGEBRA UNIVERSALIS, 2005, 53 (01) : 73 - 108
  • [45] Many-Valued Modal Logic
    Karniel, Amir
    Kaminski, Michael
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (415):
  • [46] Calculi for Many-Valued Logics
    Michael Kaminski
    Nissim Francez
    Logica Universalis, 2021, 15 : 193 - 226
  • [47] A STUDY IN MANY-VALUED LOGIC
    HACKSTAFF, LH
    BOCHENSKI, JM
    STUDIES IN SOVIET THOUGHT, 1962, 2 (01): : 37 - 48
  • [48] Many-valued quantum algebras
    Ivan Chajda
    Radomír Halaš
    Jan Kühr
    Algebra universalis, 2009, 60 : 63 - 90
  • [49] Many-valued quantum algebras
    Chajda, Ivan
    Halas, Radomir
    Kuehr, Jan
    ALGEBRA UNIVERSALIS, 2009, 60 (01) : 63 - 90
  • [50] 2-VALUED AND MANY-VALUED LOGIC
    ZINOVEV, AA
    SOVIET STUDIES IN PHILOSOPHY, 1963, 2 (1-2): : 69 - 84