On Entanglement Breaking Channels for Infinite Dimensional Quantum Systems

被引:0
作者
Kan He
机构
[1] Taiyuan University of Technology,Department of Mathematics, Institute of Mathematics
来源
International Journal of Theoretical Physics | 2013年 / 52卷
关键词
Quantum channels; Positive maps; Entanglement; Extreme points;
D O I
暂无
中图分类号
学科分类号
摘要
The topic of entanglement breaking channels plays an important role in quantum information. Horodecki et al. (Rev. Math. Phys. 15:629–641, 2003) gave a complete characterization of entanglement breaking channels for finite dimensional quantum systems. In the note, we will generalize the results in Horodecki et al. (Rev. Math. Phys. 15:629–641, 2003) to the infinite dimensional case. We first generalized the positive map criterion of the entanglement breaking channel from the finite dimensional case to the infinite dimensional case. As a generalization of entanglement breaking channels for finite dimensional quantum systems, the topic of the strong entanglement breaking channel for arbitrary (finite or infinite) dimensional systems is putted forward. We obtain the operator sum representation of the strong entanglement breaking quantum channel. Applying this operator sum representation, we characterize a category of extreme points of the convex set of all strong entanglement breaking channels, which generalizes corresponding results in the finite dimensional case from Horodecki et al. (Rev. Math. Phys. 15:629–641, 2003).
引用
收藏
页码:1886 / 1892
页数:6
相关论文
共 21 条
  • [1] Augusiak R.(2011)On structural physical approximations and entanglement breaking maps J. Phys. A, Math. Theor. 44 3005-3021
  • [2] Bae J.(2010)Correlated knowledge: an epistemic-logic view on quantum entanglement Int. J. Theor. Phys. 49 1025-1035
  • [3] Czekaj L.(2011)A characterization of positive linear maps and criteria of entanglement for quantum states J. Phys. A, Math. Theor. 43 929-940
  • [4] Lewenstein M.(1993)Entanglement-breaking channels in infinite dimensions Sci. China Ser. A 36 171-184
  • [5] Baltag A.(1989)General entanglement breaking channels Sci. China Ser. A 32 629-641
  • [6] Smets S.(2008)Quantum entanglement Probl. Inf. Transm. 44 865-undefined
  • [7] Hou J.C.(2003)Operator-sum representation for bosonic Gaussian channels Rev. Math. Phys. 15 4277-undefined
  • [8] Hou J.C.(2009)undefined Rev. Mod. Phys. 81 undefined-undefined
  • [9] Hou J.C.(2011)undefined Phys. Rev. A 84 undefined-undefined
  • [10] Holevo A.S.(1989)undefined Phys. Rev. A 40 undefined-undefined