Uniform distribution of saddle connection lengths in all SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{SL}(2,\pmb {\mathbb {R}})$$\end{document} orbits

被引:0
|
作者
Donald Robertson
Benjamin Dozier
机构
[1] University of Manchester,Department of Mathematics
[2] Cornell University,Department of Mathematics
关键词
Saddle connections; Uniform distribution; Flat surfaces; Modular group; 37D40; 11K06; 37C29;
D O I
10.1007/s10711-023-00800-3
中图分类号
学科分类号
摘要
For every flat surface, almost every flat surface in its SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{SL}(2,\mathbb {R})$$\end{document} orbit has the following property: the sequence of its saddle connection lengths in non-decreasing order is uniformly distributed in the unit interval.
引用
收藏
相关论文
共 17 条